
Cooperative Task Spaces for Multi-Arm
Manipulation Control based on
Similarity Transformations

Journal Title
XX(X):1–25
©The Author(s) 0000
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Tobias Löw 1 2, Cem Bilaloglu 1 2, Sylvain Calinon 1 2

Abstract
Many tasks in human environments require collaborative behavior between multiple kinematic chains, either to provide
additional support for carrying big and bulky objects or to enable the dexterity that is required for in-hand manipulation.
Since these complex systems often have a very high number of degrees of freedom, coordinating their movements is
notoriously difficult to model. In this article, we present the derivation of the theoretical foundations for cooperative task
spaces of multi-arm robotic systems based on geometric primitives defined using conformal geometric algebra. Based
on the similarity transformations of these cooperative geometric primitives, we derive an abstraction of complex robotic
systems that enables representing these systems in a way that directly corresponds to single-arm systems. By deriving
the associated analytic and geometric Jacobian matrices, we then show the straightforward integration of our approach
into classical control techniques rooted in operational space control. We demonstrate this using bimanual manipulators,
humanoids and multi-fingered hands in optimal control experiments for reaching desired geometric primitives and in
teleoperation experiments using differential kinematics control. We then discuss how the geometric primitives naturally
embed nullspace structures into the controllers that can be exploited for introducing secondary control objectives.
This work represents the theoretical foundations of this cooperative manipulation control framework, and thus the
experiments are presented in an abstract way, while giving pointers towards potential future applications.

Keywords
Conformal Geometric Algebra

1 Introduction

Humans excel at dexterous manipulation using the redun-
dancy of their arms and hands to achieve complex tasks
where cooperative behaviors between the different kinematic
chains is required. Many environments are built around
these advanced manipulation capabilities, and robots that
are increasingly operating within them. Yet, it still remains
challenging for robots to achieve dexterous manipulation that
is on par with humans (Kadalagere Sampath, N. Wang, H.
Wu, and Yang 2023). Nevertheless, robots are now expected
to handle various tasks that require them to interact with
objects in a way that goes beyond traditional parallel jaw
grippers or suction cups that are often featured on single arm
manipulators. These types of end-effectors are limiting the
robot manipulation capabilities, since many objects are often
more complex and require different strategies. For instance,
big and bulky objects may call for dual-arm manipulators for
picking and placing. This kind of coordination between two
arms is vital when grasping, lifting, and transferring objects
of varying shape, weight, and fragility. This is similarly true
for intricate tasks such as in-hand manipulating and multi-
fingered grasping using robotics hands. The common ground
here is coordinating the movements of two or more parallel
kinematic chains to interact with the environment during
manipulation tasks.

However, many manipulation tasks do not require
exploiting the full redundancy of the system. This is because
the kinematic chains are not acting independently but
instead are coordinated to achieve a shared objective. As

a result, the effective behavior of the system often lies
on a lower-dimensional manifold embedded within the full
configuration space. We refer to these manifolds exhibiting
specific geometric structures as cooperative task spaces.
Recognizing and leveraging this structure not only reduces
the dimensionality of the control or planning problems but
also improves interpretability. Moreover, these geometric
structures naturally give rise to geometric nullspaces, which
can be exploited for secondary objectives, such as regulating
contact forces, without interfering with the primary task
objective, as we previously demonstrated in (Bilaloglu, Löw,
and Calinon 2025).

Existing work using dual quaternions (Adorno, Fraisse,
and Druon 2010) and geometric algebra (Löw and Calinon
2024) has begun to explore cooperative task spaces, partic-
ularly in the context of dual-arm manipulation. However,
the notion of cooperation extends well beyond dual-arm
settings. Many real-world scenarios involving multiple kine-
matic chains, such as torso-arm-hand coordination or multi-
fingered in-hand manipulation, can benefit from a unified
geometric framework that generalizes cooperative control.

1Idiap Research Institute, Martigny, Switzerland
2EPFL, Lausanne, Switzerland

Corresponding author:
Tobias Löw, Idiap Research Institute, EPFL, Switzerland.
Email: tobias.loew@epfl.ch

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

To illustrate this, we provide a non-exhaustive collection
of robotic systems and manipulation challenges that can
be abstracted through cooperative subspaces corresponding
to geometric primitives, as shown in Figure 1. The geo-
metric primitives only depend on the number of kinematic
chains that are involved in the task. Hence, they model
the cooperative behavior, and are not chosen based on an
approximation of the object shape. Our overarching goal
is to generalize operational space control (Khatib 1987),
which was originally formulated for single manipulators,
to systems with multiple kinematic chains by representing
cooperative task spaces as geometric primitives within the
control architecture.

Figure 1. Overview of various daily-life tasks and how they can
be modeled using the cooperative geometric primitives. Note
that the geometric primitives do not approximate the shape of
the objects, but instead model the cooperative behavior of the
kinematic chains. The corresponding reference points are
shown in red. Left: Human activities with an overlay of the
proposed geometric primitive to capture the task constraints.
Right: Corresponding robotic system with the cooperative
geometric primitive achieving the same behavior.

In this article, we address the challenge of cooperative
manipulation control for robotic systems involving multiple
parallel kinematic chains. We do so by combining the various
ideas around cooperative control, grasping nullspaces and
geometric primitives, into a single, mathematically coherent
framework by introducing cooperative geometric primitives
and integrating them into geometrically consistent control
schemes. For this, we leverage conformal geometric algebra
(CGA) to find algebraic objects that represent geometric
primitives that go beyond keypoints. In prior work, we have
shown how these primitives define geometric nullspaces
and how they can be used in optimal control (Löw and
Calinon 2023). In the same optimal control framework, we
have then extended the cooperative dual-task space using
CGA for bimanual robots (Löw and Calinon 2024). Here,
we further extend this idea, by exploring how cooperative
geometric primitives enable decentralized control strategies
that harmonize task execution, disturbance rejection, and
inter-agent coordination. We show that by exploiting CGA,
different systems can be modelled in a uniform manner
that allows informed collaboration strategies based on the
geometric primitives and conformal transformations that can
be expressed in this algebra. Our contributions therefore are

• A geometric representation for cooperative behaviors
of multiple parallel kinematic chains using geometric
primitives, enabling intuitive modeling of coordinated
manipulation tasks;

• Introduction of similarity transformations of geomet-
ric primitives, extending classical rigid body trans-
formations from single end-effector control to multi-
chain cooperative manipulation;

• A unified mathematical framework for cooperative
control based on similarity transformations, that can
be used with optimal control or differential kinematics
formulations;

• Exploitation of geometric nullspaces inherent in
the cooperative task space for achieving secondary
control objectives, such as contact force regulation or
redundancy resolution, without affecting primary task
execution;

• Demonstration of the versatility and scalability of
the proposed approach on complex robotic systems,
including humanoid platforms and multi-fingered
hands, through tasks involving cooperative reaching
and teleoperation.

1.1 Related Work
A common example for highlighting the challenges of
cooperative manipulation is the collective transport of
big and bulky objects that cannot be handled by a
single robot. This task is very challenging, since multiple
robots interact with the same object via local control
actions (Erhart, Sieber, and Hirche 2013), which requires
them to cooperate in order to achieve a common,
global goal. Traditional approaches often use a leader-
follower strategy, where the different roles are predefined,
and the agents communicate explicitly. However, these
strategies often fail due to uncertainties stemming from
the task parameters, environmental dynamics, or the team
composition (Farivarnejad and Berman 2022). Solving these

Prepared using sagej.cls

Löw et al. 3

issues requires strategies that do not rely on centralized
coordination, but instead use the manipulated object as
a physical channel for implicit coordination. By sensing
the exerted forces on the shared payload, the robots can
decompose the motion into an allowed task space motion and
a nullspace motion that is used rejecting perturbations (Carey
and Werfel 2024). This strategy minimizes force conflicts,
and enables cooperative manipulation even under strict
communication constraints. Recent advances in cooperative
control favor frameworks that further emphasize distributed
optimization and adaptability. They optimize the individual
performance of the robots in the system that suffers
reduced operation capabilities due to the physical connection
through grasping (He, M. Wu, and Liu 2022). Furthermore,
the optimization can include objectives for enhancing the
manipulability, avoiding obstacles, and reducing internal
forces caused by robot motion errors due to coupling
(He, M. Wu, and Liu 2020). Hence, there is an inherent
trade-off between physical coupling (e.g. rigid grasps) and
operational flexibility, which makes it important to deal
with disturbances to avoid unexpected behaviors (Aladele,
De Cos, Dimarogonas, and Hutchinson 2022). Learning-
based approaches try to simplify the problem of coordinating
multiple agents by introducing actions through shared latent
spaces, which reduces the sample complexity of high-
dimensional tasks like dual-arm manipulation (Aljalbout
and Karl 2023). Alternatively, bi-manual end-effector poses
are learned from demonstrations using task-parameterized
dynamical systems (Silverio, Rozo, Calinon, and Caldwell
2015).

Dynamic Movement Primitives (DMPs) have emerged
as a powerful way to encode complex trajectories
while preserving stability guarantees. A comprehensive
tutorial survey frames DMPs as a bridge between
model-based control and data-driven learning, highlighting
their suitability for multi-robot settings where each agent
can generate locally consistent motions that nevertheless
respect a globally defined attractor (Saveriano, Abu-
Dakka, Kramberger, and Peternel 2023). Building on
this foundation, it has been demonstrated that DMPs
can be combined with velocity scaling to personalise
human-robot collaborative transport. By modulating the
DMP speed according to the measured interaction forces,
the system achieves smooth, safe hand-overs even when
the human operator varies the payload weight or trajectory
on-the-fly (Franceschi, Bussolan, Pomponi, Avram, Baraldo,
and Valente 2025). Other work has leveraged human
motion prediction based on DMPs to enable seamless
collaborative object transfer, showing that anticipating
the human partner’s trajectory improves coordination and
reduces interaction forces (Sidiropoulos, Karayiannidis, and
Doulgeri 2019). The sensed forces on the shared object
become the scaling signal for the DMPs, thereby turning the
payload itself into a communication medium that implicitly
synchronises the robots’ motion. While many cooperative
manipulation studies assume rigid payloads, real-world
logistics increasingly involve deformable or soft objects
(e.g., bags of grain, flexible containers). Movement-Primitive
Diffusion introduced a generative framework that learns
gentle manipulation policies for deformable items directly
from demonstrations (Scheikl, Schreiber, Haas, Freymuth,

Neumann, Lioutikov, and Mathis-Ullrich 2024). The
diffusion model produces smooth DMP parameters that
respect material compliance, effectively reducing internal
stresses that would otherwise arise from hard-grasping
strategies. This approach complements the earlier discussion
on internal-force minimisation (He, M. Wu, and Liu 2020)
by providing a data-driven means to shape the primitive
itself, rather than relying solely on post-hoc optimisation.
Moreover, the diffusion-generated primitives can be shared
across robots, enabling distributed execution without explicit
communication—each robot samples the same stochastic
primitive conditioned on its local perception of the object’s
deformation.

Some approaches are inspired by the formation control
that is often used in the area of autonomous ground vehicles
(Spletzer, Das, Fierro, Taylor, Kumar, and Ostrowski 2001),
and are extended to manipulation, where the agents are
treated as part of a cohesive geometric formation (Sieber,
Deroo, and Hirche 2013). In this setting, one of the agents
can be a human that is guiding the robots, which in turn try to
maintain desired geometry w.r.t. each other, while reducing
internal stresses (Sieber and Hirche 2019). It can then be
shown that, the internal interactions forces in cooperative
manipulation that arise from a formation of robots, lie in
the null space of the grasp matrix, i.e. the dynamics of
the object are not affected by them (De Pascali, Erhart,
Zaccarian, Francesco, and Hirche 2022). This insight also
bridges the connection to literature on grasping and in-hand
manipulation, where the problem setting is similar, in the
sense that multiple parallel kinematic chains are tasks to
cooperatively manipulate a shared object. Both scenarios
have a high kinematic redundancy can be exploited (Yao
and Billard 2023). We can therefore also mirror control
strategies for robotic grip adjustment, to enable adaptive
force modulation for cooperative robotic manipulation in
response to environmental feedback. Here, compliant control
behaviors are achieved through impedance control schemes
on the object level (Pfanne, Chalon, Stulp, Ritter, and
Albu-Schäffer 2020). Dexterity in contact-rich manipulation
is often limited, because in contrast to humans, typically
grasping models for robotic hands only use single contact
points at the fingertips, instead of the whole surface (Bircher,
Morgan, and Dollar 2021). Smart gripper design can alleviate
this issue to a certain extent, where the geometry is optimized
to achieve more dexterous manipulation capabilities, such
as fixing the movement of the object’s pose along sphere
(Patel and Dollar 2021). This highlights the importance of
geometric considerations for encoding spatial relationships
and constraints and the role of geometric primitives.

Geometric primitives also play an important role in
recent advances on general manipulation control, currently
mainly in the form of object-centric keypoints. The goal
here is to reduce complex tasks across a category of
objects, where shape variations are allowed, to geometric
constraints on keypoints (W. Gao and Tedrake 2021). When
used in closed-loop manipulation control for achieving
contact-rich tasks, this keypoint-based representation leads
to automatic generalization to a category of objects
by incorporating an object-centric action representation
(Manuelli, W. Gao, Florence, and Tedrake 2022). The
simplicity of the representation via keypoints has also been

Prepared using sagej.cls

4 Journal Title XX(X)

proven to have advantages for visual imitation learning.
Here, task representations are extracted from demonstrations
and decomposed into keypoint-based geometric constraints
(J. Gao, Tao, Jaquier, and Asfour 2023). This approach has
been extended to bimanual manipulation and was shown
to generalize to novel scenes in-category objects, due to
the object-centric, embodiment-independent, and viewpoint-
invariant representation (J. Gao, Jin, Krebs, Jaquier, and
Asfour 2024). Expressing task constraints via geometric
constraints on keypoints also facilitates the connection to
vision-language models, such that tasks can be defined using
language instructions (Huang, C. Wang, Li, Zhang, and Fei-
Fei 2025).

2 Mathematical Background

2.1 Geometric Algebra
In this article, we use the specific variant known as conformal
geometric algebra (CGA) G4,1. CGA extends the Euclidean
space R3, characterized by the three basis vectors e1, e2, e3,
by two additional basis vectors e4 and e5, where e24 = 1 and
e25 = −1. The conformal model is then found by a change
of basis that introduces the basis vectors e0 = 1

2 (e5 − e4)
and e∞ = e4 + e5, which can be understood as a point at
the origin and one at infinity. CGA contains both geometric
primitives and conformal transformations in the same
algebra. We use these properties in our method to define
control schemes based on cooperative geometric primitives
and their similarity transformations. In this section, we
introduce the necessary mathematical background, and we
will use the following notation throughout the paper: x
to denote scalars, x for vectors, X for matrices, X for
multivectors and X for matrices of multivectors.

2.1.1 Geometric Primitives Euclidean points x are
embedded in CGA by using the conformal embedding

P (x) = e0 + x+
1

2
x2e∞. (1)

These conformal points form the basic building blocks for
geometric primitives that can be represented in the algebra.
Note that, this nonlinear embedding turns flat Euclidean
space into a parabolic space. Furthermore, this embedding
is similar to how we traditionally embed vectors in R3 into
R4 when using homogeneous coordinates.

In general, geometric primitives, such as lines, circles and
spheres, can be constructed from conformal points using the
outer product, i.e.

X =

n∧
i=1

Pi. (2)

In the above equation, depending on the number of points
n and the presence of the point at infinity e∞, different
geometric primitives can be constructed. For example, one
can construct a line from two points passing through it
and the point at infinity. A circle can be constructed from
any three points lying on its orbit. Similar constructions
can be used for other geometric primitives, such as planes
and spheres. The geometric primitives are subspaces of the
algebra, defining a nullspace under the outer product

NOG(X) =
{
x ∈ R3 : P (x) ∧X = 0

}
. (3)

This means that the set of conformalized Euclidean points
that result in zero using the outer product forms the
geometric primitives (Perwass 2009). We have shown
previously how this outer product formulation can be
formulated within an optimal control framework to define
reaching tasks involving the geometric primitives (Löw and
Calinon 2023).

As part of the geometric algebra, the geometric primitives
can be used in algebraic expressions that have geometrically
meaningful interpretations. For example, the projection of a
point P to another geometric primitive X is achieved by the
general formula

P ′ = (P ·X)X−1. (4)

Using what is known as the meet operator, it is also possible
to calculate intersections between any two geometric
primitives

Y = (X∗
1 ∧X∗

2)
∗, (5)

where the ∗ operator denotes the dual of a multivector,
which in CGA amounts to multiplication by the pseudoscalar
I = e0123∞. Here, it is not required to additionally consider
edge cases. For example, in the case of a line and a circle,
it is not necessary to check whether the line is tangential,
intersecting the circle twice or not all. Equation (5) will
always return a meaningful geometric primitive that conveys
the information of these different cases.

2.1.2 Transformation Groups in CGA For the purpose
of robot kinematics and dynamics, we are interested in a
representation of the special Euclidean group SE(3), i.e.
the group of rotations and translations. In CGA it can be
identified as the motor group M, which is a representation
of Spin(3)⋉R3, a double-cover of SE(3), meaning that
VM ,−VM ∈ M represent the same transformation. The
motor group is a six-dimensional manifold that is also
a Lie group with the group constraint VMV −1

M = 1. The
corresponding Lie algebra is the bivector algebra BM =
{e23, e13, e12, e1∞, e2∞, e3∞}. Elements of the Lie algebra
B ∈ BM can be mapped to group elements VM ∈ M via
a surjective map called the exponential map exp : B →
M. Accordingly, its inverse operation for projecting group
elements to the Lie algebra is named the logarithmic
map log : M → B. Motors can be used to transform any
multivector within the algebra, i.e. they can be used to
transform geometric primitives. This adjoint operation is
formulated as the product

X ′ = VMXṼM , (6)

where ṼM denotes the reverse of a multivector.
In addition to rigid body transformations, CGA also

contains elements, called dilators, that cause uniform
scaling. These dilators form a group under the geometric
product that we denote as D. If we combine rigid body
transformations with uniform scaling using the semi-direct
product, we obtain the similarity transformation group
S, i.e. S = M ⋊ D. Note that, we omit reflections
from this group definition, since we want to preserve the
handedness. Similarity transformations VS ∈ S transform
geometric primitives using the same Equation (6) as motors.
In this article, we use similarity transformations to find

Prepared using sagej.cls

Löw et al. 5

control laws for systems of multiple parallel kinematic
chains.

For conciseness, we omit here the full definition of the
groups. The equations for exponential and logarithmic maps
of the different transformation groups in CGA can be found
in Appendix A, along with further explanations of these
transformations and their relationship to the matrix Lie
algebras.

2.2 Robot Modeling using CGA
Using motors, the forward kinematics given the current joint
configuration q of serial kinematic chains can be found via
the product of joint motors, i.e.

VM (q) =

n∏
j=1

VM,j(qj) =

n∏
j=1

exp(qjBj), (7)

where Bj is the bivector describing essentially the screw
axis of the j-th joint. We described the derivation of the
analytic J A

q and geometric J G
q Jacobians in (Löw and

Calinon 2023). Expressed w.r.t. the end-effector motor, their
relationship can be found as

J G
q = −2ṼMqJ A

q . (8)

2.3 Geometric Algebra for Optimal Control
In (Löw and Calinon 2023), we presented an approach for
optimal control using CGA that used the outer product for
distance computations between geometric primitives. For a
conformal point P (q), this distance can be formulated as the
outer product of the target geometric primitive and the point

d(q) =
∥∥X ∧ P (q)

∥∥2
2
, (9)

where P (q) = VM (q)e0ṼM (q) is the current end-effector
point. By definition, the outer product results in zero if the
point is contained within the geometric primitive. Hence, the
geometric primitives X determine a geometric nullspace for
the controller. We showed that this nullspace automatically
leads to compliant behavior when moving tangentially to
the geometric primitive, and stiff behavior when moving
orthogonally. In contrast, our control formulation in this
article is not based on the outer of geometric primitives.
Instead, we formulate the multi-arm manipulation control
based on similarity transformations of cooperative geometric
primitives. While this formulation differs, the insights about
the geometric nullspaces remain valid, as we will explain in
more detail in this article.

2.4 Geometric Nullspace for Impedance
Control

Nullspaces offer an intuitive way to formulate hierarchical
control objectives, i.e. to introduce secondary objectives
that do not disturb the tracking of the primary one. We
have previously exploited the geometric nullspace formed
by a line primitive to separate the objectives of tracking
a line, while exerting a force along that line in a tactile
control application (Bilaloglu, Löw, and Calinon 2025).
This separation was achieved purely geometrically without
the need to derive an appropriate precision matrix and

transforming it to the correct reference frame. Hence,
the geometric nullspaces are entirely coordinate-free and
thus greatly simplify the definition of hierarchical control
objectives.

2.5 Cooperative Dual Task Space
In this section, we briefly introduce the cooperative dual-task
space using CGA that we presented in (Löw and Calinon
2024) as an extension of (Adorno, Fraisse, and Druon 2010).
The formulation of the CDTS uses two motors to express the
collaborative behaviour of the two manipulators. The motors
represent a relative and an absolute pose. We first find the
relative motor as

VMr
(q1, q2) = ṼM2

(q2)VM1
(q1), (10)

and similarly, the absolute motor can be found as

VMa(q1, q2) = VM2(q2) exp

(
1

2
log

(
VMr

(q1, q2)
))

,

(11)
where q1 and q2 denote the joint configurations of the first
and second manipulator, respectively. VM1

and VM2
are the

corresponding end-effector motors found using the forward
kinematics formula from Equation (7). For brevity, we
omit the derivation of the corresponding analytic Jacobians
J A

r (q1, q2) and J A
a (q1, q2) and instead refer readers to

(Löw and Calinon 2024) for details.
Our extension of the CDTS presented a geometric prim-

itive, called the cooperative pointpair, that corresponds to
both end-effector positions simultaneously. This cooperative
pointpair is defined as the outer product of the two end-
effector points, i.e.

Pcdts = VM1
(q1)e0ṼM1

(q1) ∧ VM2
(q2)e0ṼM2

(q2). (12)

This cooperative pointpair is the cornerstone of the idea
to formulate collaborative geometric primitives for robotic
systems involving more than two kinematic chains.

3 Method
Geometric algebra enables the direct representation of
geometric primitives within the algebra. Here, we show
how to include these geometric primitives in the control
objective by deriving control strategies based on similarity
transformations.

3.1 Cooperative Task Space Modeling
Suppose we have a robotic system that consists of n parallel
kinematic chains. Each of these kinematic chains has mi

degrees of freedom, such that the cooperative system has
m = m1 + . . .+mn degrees of freedom. Hence, the joint
space configuration of the cooperative system q ∈ Rm is
composed as

q =
[
q⊤
1 q⊤

2 · · · q⊤
n

]⊤
. (13)

The approach for modeling this cooperative system can then
be described as a function f : Rm → S that maps a given
joint angle configuration q ∈ Rm to an element of the group
of similarity transformations VSc(q) ∈ S. We call VSc(q)

Prepared using sagej.cls

6 Journal Title XX(X)

the cooperative similarity transformation. We schematically
depict the function f in Figure 2. The calculation relies
on two intermediary representations. The first one are the
points Pi(qi) that stand for the end-effector points of the
individual kinematic chains. We use these points to calculate
a cooperative geometric primitive Xc(q) that we then use
to calculate VSc(q). We will give more details on the
involved mathematics in the following sections. Instead, in
this section, we focus on the high-level concept given by
the modeling of cooperative task spaces via the cooperative
similarity transformation.

f :Rm S

q

qn

...

q2

q1

Pn(qn)

...

P2(q2)

P1(q1)

Xc(q) VSc(q)

Figure 2. Forward kinematics function for cooperative systems
using similarity transformations.

Usually, the forward kinematics of a single kinematic
chain are described by the function g : Rm → SE(3), where
SE(3) is the Lie group of special Euclidean transformations,
i.e. rotations and translations. This group is typically
represented by homogeneous transformation matrices T ∈
R4×4, making it a matrix Lie group. The matrix obtained
by the function g is usually called the end-effector pose of
the robot and is used in various control algorithms, such as
impedance/admittance control. We claim that the function
f that we propose in this article extends the function g in
terms of how it is used in control and optimization algorithms
to cooperative systems. More concretely, the function g can
be considered as special case of the function f in the case
of n = 1, since SE(3) ⊂ S. This equivalence of functions
f and g is ensured by them having the same mathematical
properties. Namely, f is continuous, smooth, non-linear,
non-injective and non-surjective, but especially f is well-
defined. This last property means that for every joint angle
configuration q there exists a unique cooperative similarity
transformation VSc(q). We highlight this property, because it
means we can use the cooperative similarity transformation,
and by extension the cooperative geometric primitive, to
obtain a new joint configuration (via e.g. inverse kinematics).
As the joint configuration q contains all kinematic chains
without assigning them any specific priority, our modeling
approach yields control commands for all kinematic chains
simultaneously. It also means that the cooperative geometric
primitive is not a constraint that is imposed on the system,
but on the contrary, is the state of the system.

3.2 Cooperative Geometric Primitives
We assume that the task-space modeling of the robotic
system is done via one of the geometric primitives of CGA.
We call this primitive the cooperative geometric primitive

and denote it as Xc(q). Xc(q) extends the ideas around the

(a) End-effector point of a Ufactory
Lite6 robot.

(b) The cooperative dual task
space for two Franka robots.

(c) The cooperative circle for a
humanoid formed by its two wrists
and a point on the torso.

(d) The cooperative sphere of the
four fingers of the Leap Hand.

Figure 3. Cooperative geometric primitives for multiple
kinematic chains. The red points indicate the reference points
on the robots that are considered for the cooperative geometric
primitive, which is then shown in green.

cooperative pointpair that was shown in Equation (12) to n
parallel kinematic chains. We use the properties of the outer
product of points to find the cooperative geometric primitive
Xc(q) formed by the end points of those kinematic chains

Xc(q) =

n∧
i=1

Pi(q) =

n∧
i=1

VM,i(qi)e0ṼM,i(qi), (14)

where the conformal points Pi correspond to the end
points of the kinematic chains. The trivial case of one
kinematic chain is a point. Two kinematic chains give a
pointpair, three a circle, and four a sphere. Examples of
the cooperative geometric primitives for varying numbers
of kinematic chains can be seen in Figure 3. Here, we use
three manipulators as a proxy for a three-fingered hand to
highlight the mathematical equivalence between multiple
robot manipulators and robotic hands with multiple fingers.
Note that, instead of a pointpair, we could also use a
line and instead of a circle, a plane. Both would only
require multiplication with the point at infinity and would
lead to a relaxed control law that allowed more degrees
of freedom. In general, this construction of cooperative
geometric primitives holds for geometric algebras of
different dimensions, i.e. for any number of n. In our case,
using G4,1, which is a 5-dimensional algebra, the highest
dimensional geometric primitive is a sphere. A sphere is
constructed from n = 4 points, i.e. we limit our view in this
section on a maximum of four parallel kinematic chains.
In theory, however, using higher dimensional geometric
algebras, the derived formulas could be extended to 4 + n
parallel kinematic chains. We will go into more detail on this
point in the discussion in Section 5.6.

The analytic Jacobian for the cooperative geometric
primitive J A

c (q) can be found as the derivative of Xc(q)

Prepared using sagej.cls

Löw et al. 7

w.r.t. the joint angles, i.e.

J A
c (q) =

∂

∂q
Xc(q) =

[
J A

c,1(q) . . . J A
c,n(q)

]
, (15)

where
J A

c,i(q) = P1 ∧J P,i ∧ . . . ∧ Pn, (16)

and
J P,i = J A

i e0M̃i + VM,ie0J̃ A
i . (17)

The cooperative geometric primitives are an intermediate
representation that describe the inherent task space state of
the system. In some sense, they represent the cooperative
task space geometry for multiple parallel kinematic chains.
The actual representation that we derive in this work is based
on similarity transformations derived from the geometric
primitives. As we show in the following section, these
similarity transformations can then be seen as a direct
extension of the end-effector pose of a single kinematic chain
in classical control and optimization.

3.3 Similarity Transformations
Similarity transformations form a Lie group S that is a
seven dimensional manifold. In the context of this work,
they can be used for transforming the cooperative geometric
primitives. We define the canonical decomposition of a
general similarity transform versor to be

VS = VTVRVD. (18)

Elements of the associated Lie algebra BS can be found via
the logarithmic map

BS = log (VS)

= log(VT) + log(VR) + log(VD).
(19)

More details on the transformation groups and their
logarithmic maps can be found in Section 2.1.2 and
Appendix A. In the same way the Lie algebra of quaternions
has been used for interpolation between group elements
in applications such as spherical linear interpolation, we
can use elements BS ∈ BS for interpolating a similarity
transformation between two geometric primitives. We show
this interpolation in Figure 4.

Given the two geometric primitives, X1 and X2, we now
derive the similarity transformation VS(X1, X2) that fulfills

X2 = VS(X1, X2)X1ṼS(X1, X2). (20)

Its bivector BS(X1, X2) found from the logarithmic map
can then be used in the optimization problem given
in Equation (39). A general formula to find a versor
VC(X1, X2) that transforms X1 to X2 was derived in J.
Lasenby, Hadfield, and A. Lasenby 2019

VC(X1, X2) = c−1 (1 +X2X1) , (21)

where c is a normalization constant that depends on the
geometric primitives. However, using this general formula,
VC(X1, X2) ∈ C, i.e. the resulting versor will be an element
of the conformal transformation group C, not of the
similarity transformation group S. In order to restrict the
versor to S, we present the necessary derivations that

(a) Line. (b) Plane.

(c) Circle. (d) Sphere.

Figure 4. Interpolation of different geometric primitives using
similarity transformations.

give a similarity transformation between pairs of geometric
primitives according to Equation (20). Note that, this clearly
shows that the transformation between primitives is not
unique, as was already stated in J. Lasenby, Hadfield, and
A. Lasenby 2019.

3.3.1 Point to Point The simplest case is transforming one
point to another. Since points neither have an orientation nor
a size, the rotor VR and dilator VD simplify to the identity
transformation, i.e. VR = VD = 1. Regarding the translation
versor, given the two points P1 and P2, it is found as

VS(P1, P2) =VT (P1, P2)

= exp
(
(P2 − P1) ∧ e∞

)
.

(22)

3.3.2 Line to Line Lines have a flat geometry, i.e. they are
part of Euclidean geometry, which means a transformation
between two lines can be described purely by rotations
and translations. Hence, the versor resulting from Equation
(21) will only contain a translation and a rotation, i.e.
VS(L1, L2) ∈ M.

3.3.3 Plane to Plane Using the same argumentation as for
the case of line to line transformations, the transformation
from one plane to another can be found using Equation (21).
The resulting versor will only contain a translation and a
rotation, i.e. VS(E1, E2) ∈ M.

3.3.4 Circle to Circle Circles require all three versors
in the similarity transformation: translations, rotations and
dilations. We can directly compute the dilation versor based
on the radii r1 and r2 of X1 and X2

VD(X1, X2) = exp
(
r2r

−1
1 e0∞

)
, (23)

where that radius of a circle can be computed as

r =
∥∥∥ (X · e∞)X−1

∥∥∥. (24)

Note that the inner expression takes the form of the general
subspace projection that we showed in Equation (4). It can

Prepared using sagej.cls

8 Journal Title XX(X)

thus be interpreted as projecting infinity to the subspace of
the circle and then evaluating the resulting norm.

Next, we compute the rotation versor between the circles
by using the normals N1 and N2 of the planes that the circles
lie. These planes can be found via E = C ∧ e∞ and the
normal of plane E is computed as

N = E∗ − 1

2
(E∗ · e0)e∞. (25)

We then insert there normals in Equation (21), which yields

VR(X1, X2) = c−1(1 +N1N2)

= c−1
(
1 + (N2 ·N1)− (N2 ∧N2)

)
.

(26)

Note that this is the geometric algebra variant of the standard
expression for computing a unit quaternion between unit
vectors.

Lastly, we compute the translation versor via the center
points of the circles. The center point of circles can be found
as

P (X) = Xe∞X, (27)

which in this case amounts to reflecting infinity in the
circle or sphere. Given the center points, the translation
versor can then be computed as was indicated for points in
Equation (22). Note that, for computing the center of the
cooperative circle, we first apply the transformation given by
VR(X1, X2)VD(X1, X2), because this translation changes
the center point of the circle.

3.3.5 Sphere to Sphere For spheres, the rotation versor
is the identity, because spheres do not have an intrinsic
orientation. The dilation and translation versors can then be
calculated using the same strategy as for the circles. The
computation of the dilation versor follows Equation (23),
where the radius of a sphere is also computed in the same
was as for the circle, i.e. using Equation (24). We then use
Equation (27) to compute their center points and afterwards
Equation (22) to obtain the translation versor.

3.4 Cooperative Task Space Kinematics
First, we define the cooperative similarity transformation
VSc(q). Similarly to how an end-effector pose represents the
transformation of the coordinate system at the origin to the
end-effector, it is expressed as the similarity transformation
w.r.t. a unit geometric primitive at the origin. We denote
this primitive as Xu. In section 3.3, we have already
presented how to find similarity transformations between
two geometric primitives of the same kind. Accordingly,
the versor VSc(q) can be found following the explanations
around Equation (18) as

VSc(q) = VS (Xu, Xc(q)) . (28)

This versor then fulfills Xc(q) = VSc(q)XuṼSc(q). It is a
direct equivalent to the end-effector motor found by the
forward kinematics in Equation (7), albeit it represents a
cooperation between multiple kinematic chains and not just
a single one. Hence, the control laws that we propose, based
on this cooperative similarity transformation, yield joint
space commands for all kinematic chains simultaneously,
without adopting principles such as leader/follower. As

mentioned before, the cooperative geometric primitives are
an intermediate representation, whereas the cooperative
similarity transformations are the actual representation that
the rest of our formulations are based on. Therefore, in
the following sections, we will only mention the similarity
transformations and only assume the cooperative geometric
primitives implicitly as the task space geometries. Since
these task space geometries are more of an abstract concept
rather than a physical representation, we collect the different
task space geometries in Table 1. This table also shows
the corresponding controllable bivector space, depending on
the number of kinematic chains, and formulated w.r.t. the
cooperative similarity transformation, not the origin. Note
that the corresponding controllable bivector spaces all have
a dimension that is strictly smaller than 7, which means that
all systems have a geometric nullspace.

Most commonly, optimization solvers and control
algorithms make use of one of various Jacobians that can
be found for the cooperative similarity versor VSc(q) and
its bivector BSc(q) = log(VSc(q)). The usual kinematic
modeling of robots makes a distinction between the analytic
and the geometric Jacobian. Hence, we derive the analytic
similarity Jacobian J A

S (q), and the geometric similarity
Jacobian J G

S (q). We also show the bivector similarity
Jacobian J B

S (q) that relates changes in the joint positions
q to changes in the similarity bivector BSc(q). These
Jacobians can then be used to find the gradient, approximate
the Hessian, or compute a control signal, depending on the
chosen control approach.

As per the usual definition, the analytic similarity Jacobian
can be found from the partial derivatives of the cooperative
similarity versor w.r.t. q, i.e.

J A
Sc(q) =

∂

∂q
VSc(q)

=J A
Tc(q)VRc(q)VDc(q)

+ VTc(q)J A
Rc(q)VDc(q)

+ VTc(q)VRc(q)J A
Dc(q),

(29)

where J A
Tc(q),J

A
Rc(q), and J A

Dc(q) are the Jacobians of
the translation, rotation and dilation versors, respectively. We
omit the full derivation here for conciseness, which can be
found in Appendix B.

The geometric similarity Jacobian can be used to
formulate control laws such as differential kinematics or
impedance/admittance control. Via the group constraint and
from the relationship between the end-effector Jacobians
shown in Equation (8), it is easy to see that the following
relationship holds:

J G
Sc(q) = −2ṼSc(q)J A

Sc(q). (30)

Note that, similar to the traditional geometric Jacobian,
the geometric similarity Jacobian is also depending on a
frame of reference. The above relationship represents the
geometric similarity Jacobian w.r.t. the cooperative similarity
transformation, as opposed to, for example, the origin.
The equivalent end-effector Jacobian from classical single
kinematic chain modeling is sometimes referred to as the
body Jacobian.

Lastly, the bivector similarity Jacobian J B
S (q) is found

as the partial derivates of a cooperative similarity bivector

Prepared using sagej.cls

Löw et al. 9

Table 1. Description of the cooperative similarity task spaces for 1, 2, 3, and 4 parallel kinematic chains. In the case of 2 and 3
kinematic chains, two different cooperative geometric primitives are possible by including the basis vector e∞ via outer product.
This changes the controllable bivector space to be smaller, which essentially means that the system is less constrained and gain
additional degrees of freedom.

Joint Space Cooperative Geometric Primitive Controllable Bivector Space

q =
[
q⊤
1

]⊤ Point Xc(q) = P (q) e1∞, e2∞, e3∞

q =
[
q⊤
1 q⊤

2

]⊤ Point Pair Xc(q) = P (q1) ∧ P (q2) e12, e23, e0∞, e1∞, e2∞, e3∞
Line Xc(q) = P (q1) ∧ P (q2) ∧ e∞ e12, e23, e1∞, e3∞

q =
[
q⊤
1 q⊤

2 q⊤
3

]⊤ Circle Xc(q) = P (q1) ∧ P (q2) ∧ P (q3) e13, e23, e0∞, e1∞, e2∞, e3∞
Plane Xc(q) = P (q1) ∧ P (q2) ∧ P (q3) ∧ e∞ e13, e23, e3∞

q =
[
q⊤
1 q⊤

2 q⊤
3 q⊤

4

]⊤ Sphere Xc(q) = P (q1) ∧ P (q2) ∧ P (q3) ∧ P (q4) e0∞, e1∞, e2∞, e3∞

BSc(q) w.r.t. q by applying the chain rule

J Bc(q)=
∂

∂q
BSc(q) =

∂

∂q
log

(
VSc(q)

)
=

∂

∂V
log

(
VSc(q)

) ∂

∂q
VSc(q)

= J S→BS
(q)J A

Sc(q),

(31)

where J S→BS
(q) is the Jacobian of the logarithmic

map of the similarity transformation group. The bivector
similarity Jacobian can then be used in applications such as
optimization-based inverse kinematics.

3.5 Cooperative Task Space Dynamics
In this section, we present the derivation of the task
space dynamics defined by the cooperative similarity
transformations. We start from the well-known joint space
dynamics

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ − τext, (32)

where M(q) is known as the inertia or generalized mass
matrix, C(q, q̇) is representing Coriolis/centrifugal forces,
g(q) stands for the gravitational forces, τ is the vector of
joint torques and τext are the external torques. Analogously
to the classical formulation of the task space dynamics using
the geometric Jacobian J G(q) of a single kinematic chain,
we can use the geometric similarity Jacobian J G

Sc(q) to
derive the dynamics of the cooperative task space. Recall that
the geometric similarity Jacobian defines the relationship
between the joint and task space velocities, i.e.

VS = J G
Sc(q)q̇, (33)

where VS ∈ BS is a twist-like quantity. Taking the derivative
w.r.t. time yields

V̇S = J G
Sc(q)q̇ + J̇

G

Sc(q, q̇)q. (34)

Using this result and following the derivations from
the classical operational space formulation, we find the
similarity task space dynamics as

MSc(q)V̇S +CSc(q, q̇) + gSc(q) = WS , (35)

where the similarity inertia matrix is found as

MSc(q) =
((

J G
Sc

)
M−1

(
J G

Sc

)⊤
)−1

, (36)

the Coriolis/centrifugal forces as

CSc(q, q̇) = MSc

(
J G

ScM
−1C − J̇

G

Scq̇
)
, (37)

and the gravitational forces as

gSc(q) = MScJ G
ScM

−1g. (38)

3.6 Cooperative Similarity Control
We base the formulation of the control objective for cooper-
ative manipulation control on similarity transformations. We
express the control objective as an optimization problem

min
∥∥∥ log (ṼSc(q)VSd

)∥∥∥, (39)

where we use the logarithmic map of the versor
representation, as explained in Section 2.1.2. The similarity
transformation VSd is a desired similarity transformation that
can be found using the unit geometric primitive

VSd = VS (Xu, Xd) , (40)

where Xd is a desired geometric primitive. Note that the
desired similarity transformation can also be set directly
without the desired geometric primitive, but latter facilitates
the process, since it can be visualized. For any pair of
geometric primitives Xc(q) and Xd, there is at least one
similarity transformation VS that transforms Xc(q) into Xd.
Solving the optimization problem in Equation 39 essentially
means making VS the identity transformation. Here, we
assume that Xc(q) and Xd are of the same type. In general,
this does not need to be the case, but is outside the scope
of this work. We add more insights on mixing geometric
primitives in the discussion section.

The versor from Equation (39) can be written as

VS(Xc(q), Xd) = VScd(q) = ṼSc(q)VSd, (41)

which is equivalent to the formulation of inverse kinematics
for a single kinematic chain based on the end-effector
motor. Note that, instead of using Equation (41), the versor
VS(Xc(q), Xd) can also directly be found following the
explanations in Section 3.3. From Equation (41), we can
then find the bivector BScd(q) via the logarithmic map that
represents the task-space control signal, similar to a twist,

BScd(q) = log (VScd(q)) . (42)

Prepared using sagej.cls

10 Journal Title XX(X)

Note that, in general, this bivector can be seven-dimensional,
since the similarity transformation group is a seven-
dimensional manifold.

Here, we do not propose any particular solver for this
optimization problem, but focus on the general modeling.
In practice, this optimization problem can be solved using
state-of-the-art methods from the literature around optimal
control, impedance/admittance control or simply using
differential kinematics. To account for this generality of the
problem formulation, we give all the mathematical details
that are necessary for these different control paradigms.
In the following, we explain how this control problem
can be embedded into existing control and optimization
frameworks, in particular impedance control and optimal
control.

3.7 Inverse Kinematics
We formulate the optimization problem from Equation (39)
such that it becomes an inverse kinematics problem

q∗ = argmin
q

∥∥∥e(q)∥∥∥2
2
, (43)

where the error vector e(q) is

e(q) = log
(
ṼSc(q)VSd

)
. (44)

To illustrate how this inverse kinematics problem can be
solved using optimization-based approaches, we present a
simple Gauss-Newton step

qk+1 = qk − αH(qk)e(qk), (45)

that starts from an initial guess q0 and iterates until
convergence. The step size α and can be found using
line search. The matrix H(q) is the Hessian matrix of
Equation (43). It can be approximated as

H(q) =
(
J ⊤

Be(qk)J Be(qk)
)−1

J ⊤
Be(qk), (46)

where the Jacobian J Be(qk) is found as

J Be(qk) = J S→BS
(q)J̃

A

Sc(q)VSd, (47)

and follows the same derivation as the cooperative bivector
Jacobian in Equation (31).

Instead of using the optimization-based inverse kinemat-
ics, we can also use a task space velocity based on the
differential kinematics. For this we recall Equation (33) that
relates the joint velocity q̇ to the similarity twist VS via the
geometric similarity Jacobian. Hence, in order to obtain a
joint-space command by using differential kinematics, we
invert the geometric similarity Jacobian

q̇ =
(
J G

Sc(q)
)−1

BS,i. (48)

The control scheme is formulated w.r.t. to the cooperative
similarity transformation, i.e. the local frame. Note that
this control formulation is identical to the usual way of
doing differential kinematics. The only difference is that
a cooperative task space of multiple kinematic chains is
modeled, as opposed to a single one. Therefore, given a
similarity twist, this control law will find joint velocities for
all kinematic chains that are part of the cooperative system.

3.8 Impedance Control
The traditional control methods require a twist as a task-
space control command. Here, the cooperative similarity
bivector BScd(q) from Equation (42) can be used to define a
corresponding similarity twist VS .

We derive an impedance control law to regulate the system
to a desired similarity transformation VSd. Assuming V̇Sd =
0, we find the error dynamics as

BS,e = log
(
ṼSc(q)VSd

)
,

ḂS,e = −1

2
VSc,

(49)

where VSc is the similarity twist from Equation (33). These
error dynamics can then be used to define a simple control
law for the desired similarity task space acceleration V̇Sd(q)

V̇Sd(q) = KBS,e +DḂS,e, (50)

where the matrices K,D ∈ R7×7 are the stiffness and
damping gains, respectively. Using the similarity task space
dynamics from Equation (41), we then compute the desired
similarity wrench WSd(q)

WSd(q) = MSc(q)V̇Sd(q) +CSc(q, q̇) + gSc(q), (51)

which is then used to compute a joint torque control
command τ (q)

τ (q) =
(
J G

Sc(q)
)⊤

WSd(q). (52)

The derivation of closely related control schemes, such as
admittance control, is very similar and could be used to
find desired joint positions or velocities for robotic systems
lacking torque control.

3.9 Optimal Control
A general optimal control problem can be written as

{u∗
k}n−1

k=0 =argmin
{uk}n−1

k=0

n−1∑
k=0

l
(
xk,uk

)
+ lf

(
xn

)
,

s.t. xk+1 = f
(
xk,uk

)
,

xk ∈ X ,

uk ∈ U ,

(53)

where xk are the states, uk the control commands, l
(
xk,uk

)
the running costs, lf

(
xn

)
the terminal cost, f

(
xk,uk

)
the

system dynamics, and X and U are the admissible sets for
the state and control, respectively.

For simplicity, we assume linear system dynamics

xk+1 = f
(
xk,uk

)
= Axk +Buk, (54)

and choose second-order dynamics in the joint space, such
that our state and control become

x =

[
q
q̇

]
, u = q̈. (55)

Since the main purpose of this section is to demonstrate
the usage of the cooperative similarity transforms in optimal

Prepared using sagej.cls

Löw et al. 11

control conceptually, we limit the scope to a simple reaching
problem. Hence, the running cost is independent of the
state xk and only penalizes the magnitude of the control
commands uk, i.e.

l(xk,uk) = u⊤
kRuk, (56)

where R is a regularization term. The terminal cost then
adopts Equation (39) to minimize the distance to the desired
similarity transformation VSd

lf (xn) = lf (qn, q̇n) =
∥∥∥ log (ṼSc(qn)VSd

)∥∥∥2
Q
, (57)

where the Q is the precision matrix.
While in this formulation the system dynamics are linear,

the terminal cost term contains non-linearities. Hence, this
problem cannot be solved in closed-form and instead needs
to be solved iteratively. Once the optimal trajectory is
obtained, the resulting sequence of control commands can
be used either open-loop, or in a receding horizon fashion
as in model predictive control. Since we opted for second-
order dynamics in the joint space, the control commands
are accelerations. These can either be integrated to obtain
position or velocity commands, or transformed to torque
commands via inverse dynamics.

3.10 Geometric Nullspace
One of the features of a redundant systems is the existence
of a nullspace. This comes from the fact that the linear
map, given by the Jacobian of the system, does not have
full column rank. The nullspace is the set of vectors that
are mapped to zero, i.e. the set of joint velocities that result
in no end-effector movement. This is a desirable property
for redundancy resolution and hierarchical control with
secondary objectives. The classic approach for projecting
any velocity vector to the nullspace is using a nullspace
projection operator like

N(q) = I −
(
J G

S (q)
)−1

J G
S (q), (58)

where in our case J G
S (q) is the geometric similarity

Jacobian from Equation (30).
In our work, we use the cooperative similarity transforma-

tions to extend the notion of end-effector poses to systems
of multiple kinematic chains. The geometric nullspace is
induced by the cooperative geometric primitive, since by
definition of the geometric primitives, they form a nullspace
under the outer product as seen from Equation (3). In our
formulation of a cooperative geometric primitive, we use the
end-effector points of the involved kinematic chains as its
defining points. Consequently, those end-effector points can
move arbitrarily along directions tangent to the cooperative
primitive without altering the primitive itself. Hence, the
cooperative geometric primitive directly encodes the sys-
tem’s geometric nullspace. Due to geometric algebra, the
primitives are algebraic objects and not simply parameter-
izations. But the explicit parameterization, such as radius
and center of a sphere, can easily be obtained from these
algebraic objects. Furthermore, we can easily relate the
derivatives of those parameters to the joint angles by using
the analytic Jacobian of the cooperative geometric primitive

J A
c (q) that we showed in Equation (15). This enables using

recent redundancy resolution methods such as Haug 2023 or
Ferrentino, Savino, Franchi, and Chiacchio 2024.

3.11 Manipulability Analysis

For a more fundamental understanding of the proposed
cooperative similarity control of these complex robotic
systems, we define the manipulability of the system.
The cooperative similarity transformation fulfills the same
role as the rigid body transformation at the end-effector,
represented as a motor, for robotic arms. For traditional
manipulability analysis, the geometric Jacobian related to
this end-effector motor is used. Accordingly, we define the
similarity manipulability ellipsoid as

MS(q) = J G
S (q)

(
J G

S (q)
)⊤

, (59)

which further highlights the parallels of the system
modeling between single kinematic chains using motors and
multiple kinematic chains using the cooperative similarity
transformation.

The similarity manipulability ellipsoid MS(q) ∈ R7×7

can be understood as a direct equivalent to the traditional
velocity manipulability ellipsoid. Hence, it informs about the
system’s capability to move the cooperative geometric prim-
itive, which is the same as the traditional manipulability’s
information about the robot’s ability to move its end-effector.
In addition, the cooperative similarity manipulability also
contains a dimension that expresses the ability to dilate the
cooperative geometric primitive. This dimension becomes of
particular interest, when we look at the inverse manipulabil-
ity M−1

S (q). This inverse represents the force manipulabil-
ity and thus expresses the system’s ability to enact forces in
different directions. For the dilation, this expresses the ability
to apply force that increase or decrease the size the of the
cooperative geometric primitive. For example, in the case of
three manipulators, this would give a measure of the radial
force for changing the radius of the cooperative circle. This
is important information for tasks such as carrying big and
bulky objects, where the three manipulators are required to
apply force to an object while carrying it. The cooperative
force manipulability can then be used to optimize for the
ideal configuration to enable the maximum force on the
dilation. Similarly, this manipulability ellipsoid could then
also be used to implement standard techniques for avoiding
the singularities discussed in Section 5.3.

4 Results

We have presented a purely geometric framework for
the cooperative control of multiple kinematic chains.
Accordingly, the examples are designed to illustrate the
underlying mathematical concepts developed in this work
through kinematic simulations. We show the cooperative
geometric primitives both in optimal control and in
teleoperation scenarios. To maintain generality, the examples
are intentionally presented in an abstract form, without
specific applications. Instead, we only refer to potential
applications. The presented results are implemented using

Prepared using sagej.cls

12 Journal Title XX(X)

our open-source software framework gafro*. Additional
material and videos of the teleoperation examples can be
found on our website†.

4.1 Impedance Control
In this section, we demonstrate the operational space control
for the similarity task space that we derived in Section 2.4.
As the setup, we choose three Kuka IIWA14 robots, as
shown in Figure 5, giving the full system 21 degrees of
freedom. By considering the three end-effector points,
the cooperative geometric primitive takes the form of a
circle. The control law follows the impedance control
in the similarity task space according to Equations (50),
(51), and (52). The final control command will therefore
be a torque command. To account for this, we are using
a simulation environment that is capable of dynamics
simulation using the forward dynamics. For the stiffness
and damping parameters we set the gain matrices as
K = diag

([
1.0 1.0 1.0 7.5 7.5 7.5 7.5

])
and

D = diag
([

5.0 5.0 5.0 5.0 5.0 5.0 5.0
])

,
respectively.

Figure 5. Three Kuka IIWA14 robots arranged in a circle. The
green circle shows the cooperative geometric primitive for the
current joint configuration.

For evaluating the similarity task space impedance
controller, we uniformly sample ten different random
initial joint configurations around a nominal initial joint
configuration q0 =

[
q⊤
1,0, q

⊤
2,0, q

⊤
3,0

]⊤
, with q1,0 = q2,0 =

q3,0 =
[
0 −0.7854 0 1.3962 0 0.6109 0

]⊤
. We

then simulate the system behavior for the given controller
and task parameters during 4s. We show the corresponding
cost values over time in Figure 6 (i.e., the norm of the
bivector from Equation (49)). It can clearly be seen that
the similarity impedance controller minimizes the error and
regulates the system towards the target cooperative similarity
transformation. Note that the response of the system could
be further improved by tuning the stiffness and damping
parameters.

4.2 Optimal Control Illustrations
In this section, we show several simulated examples of
the optimal control problem formulated in Equation (53).
As previously described, the problem is formulated as a
reaching problem. Accordingly, these results extend reaching
a desired pose with a single manipulator to a cooperative
system. We use the terminal cost given by Equation (57)
and choose a desired similarity transformation for the
cooperative geometric primitive that corresponds to the
number of kinematic chains, which can be seen from Table 1.
We choose to solve the optimization problem with the
iterative linear quadratic regulator (iLQR) algorithm. We set

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
0

0.004

0.008

0.012

0.016

0.02

0.024

0.028

0.032

0.036

0.04

Time [s]

Co
st

Figure 6. Impedance control response.

the number of timesteps to n = 250, and use ∆t = 0.001.
Hence, the planning horizon corresponds to 2.5s. Since the
problem setup is very simple, typically the solver converges
in five or less iterations. Convergence means that the error
bivector from the terminal cost in Equation (57) essentially
becomes zero, which means that the final state has reached
the desired similarity transformation.

4.2.1 Line Reaching In our first example, we examine the
simplest case: two points representing the cooperative task
space of two independent kinematic chains, such as a bi-
manual platform or the arms of a humanoid. In this scenario,
we use the Unitree G1 robot model. We neglect the legs in
this example and instead focus on the two arms, starting from
the waist joints. Since the arms each have seven degrees of
freedom and the waist has three, the total system has 17
degrees of freedom. The reference points to construct the
line according to Equation (14) are located at the wrists. By
using a line instead of a point pair to model the cooperative
behavior of the two arms, we remove constraints on the
motion and allow for the arms to move freely along the
line, which essentially defines a geometric nullspace. Here,
we illustrate a reaching motion from one line primitive to
another in Figure 7a with a humanoid model. In Figure 1,
we have shown the example of cloth folding as a potential
application for a dual arm system modeled by a cooperative
line. In Figure 7b we show the corresponding task space
bivector command that was found by solving the optimal
control problem.

4.2.2 Circle Reaching In the second example, we
consider three points that define the cooperative task space
of three independent kinematic chains. In CGA, three non-
collinear points uniquely define a circle primitive. Like a
line, a circle introduces a null space, allowing the three points
to move freely along it. We demonstrate transitions from
one circle to another using three different setups: a trio of
manipulators, the torso and arms of a humanoid robot, and a
collaborative reaching scenario involving both a manipulator
and a humanoid.

The first scenario of three manipulators, which is shown in
Figure 8a, is the most generic one. It can be seen as a general

∗https://gitlab.com/gafro
†https://geometric-algebra.tobiloew.ch/
cooperative_geometric_primitives/

Prepared using sagej.cls

https://gitlab.com/gafro
https://geometric-algebra.tobiloew.ch/cooperative_geometric_primitives/
https://geometric-algebra.tobiloew.ch/cooperative_geometric_primitives/

Löw et al. 13

(a) Task space trajectory of the cooperative line primitive that
corresponds to the optimal joint trajectory that was found for reaching
the target similarity transformation. The points used for modeling the
cooperative line are located at the wrists. The initial configuration is
shown in white and the final one in gray. The green line is the initial
cooperative line, the turquoise one the final, and in red we show its
trajectory in between.

0 0.5 1 1.5 2 2.5
-7.5

-6.5

-5.5

-4.5

-3.5

-2.5

-1.5

-0.5

0.5

1.5

Time [s]

e12
e13
e23
e1i
e2i
e3i

(b) Trajectory of the task space bivector command.

Figure 7. Humanoid reaching for a desired cooperative line.
Including the joints at the waist, this system has 17 degrees of
freedom. 7a shows the task space trajectory and 7b the
corresponding similarity bivector command.

proxy for tasks involving the lifting and manipulation of big
and bulky objects. It is also the same scenario that we used
as an example for the impedance controller in Section 4.1.
We use three Franka robots in this example, which means
that the system has 21 degrees of freedom. Notice how the
turquoise target circle is larger than the green initial circle.
Consequently, the dilation bivector command e0∞ needs to
be non-zero in order for the cooperative system to reach
the target. This can be seen in the corresponding Figure 8b,
where we plot the bivector command over the planning
horizon.

We show the second scenario in Figure 9a with the
bivector command trajectory in Figure 9b. Here, we use a
single humanoid and choose a point on the torso and its
two arms as the three points that define the circle. Since
we use the same robot model, i.e. the Unitree G1, as in
Section 4.2.1, the system also has 17 degrees of freedom.
This example illustrates how a cooperative circle can be used
to model a single humanoid carrying a big and bulky object
in arms, while pressing the object against its torso to provide
additional support. We show an illustration of this task for a
human in Figure 1.

The last scenario for the cooperative circle features a
manipulator and a humanoid that are collaborating for the
reaching of the desired circle, as shown in Figure 10a.

(a) The initial configuration is shown in white and the final one in gray.
The green circle is the initial cooperative circle, the turquoise one the
final, and in red we show its trajectory in between.

0 0.5 1 1.5 2 2.5
-0.35

-0.208

-0.0667

0.075

0.217

0.358

0.5

Time [s]

e12
e13
e23
e0i
e1i
e2i
e3i

(b) Trajectory of the task space bivector command.

Figure 8. Three Franka robots reaching for a cooperative
circle. Since each robot has seven degrees of freedom, the
complete system has 21 degrees of freedom.

(a) The initial configuration is shown in white and the final one in gray.
The green circle is the initial cooperative circle, the turquoise one the
final, and in red we show its trajectory in between.

0 0.5 1 1.5 2 2.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

e12
e13
e23
e1i
e2i
e3i

(b) Trajectory of the task space bivector command.

Figure 9. Humanoid reaching for a cooperative circle by using
a point on its torso.

Although we use a humanoid in this example, it could be

Prepared using sagej.cls

14 Journal Title XX(X)

easily replaced by a human in order to model a human-
robot collaboration scenario. Since this extension provides
an interesting opportunity for future work, we discuss it
further in Section 5.5. The bivector command trajectory can
be seen in Figure 10b.

(a) The initial configuration is shown in white and the final one in gray.
The green circle is the initial cooperative circle, the turquoise one the
final, and in red we show its trajectory in between.

0 0.5 1 1.5 2 2.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

e12
e13
e23
e0i
e1i
e2i
e3i

(b) Trajectory of the task space bivector command.

Figure 10. Collaboration between a manipulator and a
humanoid modeled by a cooperative circle.

4.2.3 Plane Reaching Similar to the line, an infinite plane
in CGA can be constructed by combining three points with a
point at infinity. As with other primitives in CGA, a plane
represents a geometric null space. Therefore, moving the
three points within the same plane results in an equivalent
control objective. We demonstrate this behavior using a
three-fingered robotic hand, as shown in Figure 11a. In
Figure 1, we have used the example of a human carrying
a plate as a potential application for this scenario. Since a
plane is a flat geometric primitive, the dilation component is
zero, as can be seen from the bivector command trajectory in
Figure 11b.

4.2.4 Sphere Reaching As the last example, we con-
sidered the sphere primitive constructed using four points,
which is the limit that we can reach with CGA. We demon-
strate reaching from one sphere to another using a four-
fingered hand in Figure 12a, and a collaborative scenario
involving two humanoids in Figure 13a. The corresponding
bivector command trajectories can be found in Figures 12b
and 13b, respectively. The cooperative sphere of the four-
fingered hand is a general example for grasping using a
robotic hand and can thus be applied to a wide range of
applications. We also show an example of this in Figure 1.
Similarly, in the scenario with the humanoids, one of the

(a) The initial configuration is shown in white and the final one in gray.
The green plane is the initial cooperative plane, the turquoise one the
final, and in red we show its trajectory in between.

0 0.5 1 1.5 2 2.5
-0.1

-0.07

-0.04

-0.01

0.02

0.05

0.08

0.11

0.14

0.17

0.2

Time [s]

e12
e13
e23
e1i
e2i
e3i

(b) Trajectory of the task space bivector command.

Figure 11. Three-fingered hand reaching for a cooperative
plane.

humanoids could be replaced by the user in order to model
human-robot collaboration. Generally, this example illus-
trates the collective transport of big and bulky objects using
two independent humanoids, as depicted in Figure 1.

4.2.5 Line Constraint The cooperative geometric prim-
itives can not only serve as task objectives but also as
constraints for secondary tasks. In the previous examples,
we demonstrated reaching problems in which the cooperative
primitive transitions from one configuration to another. Here,
we illustrate how the cooperative line primitive can be used
to impose geometric constraints on the motion of a dual-
arm system, while simultaneously executing individual end-
effector tasks.

We use the Unitree G1 humanoid robot with its two arms.
Together with the waist joints, it provides 17 degrees of
freedom. The cooperative line primitive is formed by the
two wrist points. In the first scenario, shown in Figure 14a,
we task the right hand to reach a target point, while the
left hand remains stationary. This represents an asymmetric
reaching task in which only one arm is actively controlled,
while the other provides a fixed reference. The cooperative
line connecting the two wrists therefore changes freely as the
right hand moves towards its target, which can be observed
from the trajectory of the line parameters in Figure 14b.

In the second scenario, we introduce an additional
constraint on the cooperative line, which must now remains
horizontal throughout the motion. As shown in Figure 15a,
the right hand again reaches a target point, but now
the left hand must move in coordination to maintain the
horizontal orientation of the line primitive. This coordinated
motion ensures that the line parameter corresponding to the

Prepared using sagej.cls

Löw et al. 15

(a) The initial configuration is shown in white and the final one in gray.
The green sphere is the initial cooperative sphere, the turquoise one the
final, and in red we show its trajectory in between.

0 0.5 1 1.5 2 2.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

e12
e13
e23
e0i
e1i
e2i
e3i

(b) Trajectory of the task space bivector command.

Figure 12. Four-fingered hand reaching for a cooperative
sphere. The hand has 16 degrees of freedom.

vertical component remains constant, which is reflected in
Figure 15b.

This example demonstrates the versatility of the coop-
erative geometric primitive framework for encoding both
task objectives and geometric constraints. By specifying
constraints on the cooperative primitive, such as maintaining
a horizontal orientation, the framework automatically gen-
erates coordinated motion across multiple kinematic chains.
This capability is particularly useful for tasks like carrying
objects with specific orientation requirements, or maintain-
ing formation constraints during collaborative manipulation.

4.3 Geometric Nullspace
In this section, we provide a simple example of how the
geometric nullspaces can be used in practice to define
secondary control objectives. We arrange three Franka robots
in circle, yielding a system with 21 degrees of freedom and
cooperative geometric primitive that is a circle. The primary
objective in this setup is leaving the circle unchanged, i.e.
remaining at the same cooperative similarity transformation.
The geometric nullspace allows each of robots to move freely
on the circle. Hence, we define a secondary objective that
tasks one of the manipulators to reach a different point
on the circle. Since this secondary task only involves one
kinematic chain, we can easily find a desired velocity q̇0,d
that would move the robot’s end-effector towards the goal
using classical methods. If we applied q̇0,d directly, the end-
effector point would not respect the primary objective of

(a) The initial configuration is shown in white and the final one in gray.
The green sphere is the initial cooperative sphere, the turquoise one the
final, and in red we show its trajectory in between.

0 0.5 1 1.5 2 2.5
-1.25

-1

-0.75

-0.5

-0.25

0

0.25

Time [s]

e12
e13
e23
e0i
e1i
e2i
e3i

(b) Trajectory of the task space bivector command.

Figure 13. Two humanoids reaching for a cooperative sphere.
The combined system has 34 degrees of freedom, including
both humanoids’ waist joints.

staying on the circle. We show this scenario in Figure 16.
It can clearly be seen that the distance between the initial
and current similarity transformations is non-zero during the
execution of the task.

Instead, we project the desired velocity by using the
nullspace projector N(q) from Equation (58)

q̇d,p = N(q)

q̇0,d0
0

 . (60)

Using q̇d,p, the first robot still reaches the target point, while
staying on the circle. We show this in Figure 17. It can be
seen that, by executing the motion in the nullspace of the
cooperative task space, which corresponds to the cooperative
geometric primitive, i.e. the circle, the first robot follows the
circle. Therefore, the similarity distance is zero during the
task.

4.4 Geometric Singularity
In addition to the classical kinematic singularities that
affect individual manipulators, cooperative systems exhibit
geometric singularities that arise from the degeneration of
the cooperative geometric primitive itself. These singularities
occur when the geometric primitive loses its defining
characteristics, such as when three points forming a circle
become collinear, or when a circle’s radius approaches zero
or infinity.

To illustrate this phenomenon, we consider the same setup
as in Section 4.2.2 (i.e., three Franka robots with a total of

Prepared using sagej.cls

16 Journal Title XX(X)

(a) The initial configuration of the robot is shown in white and the final
one in gray. The right hand moves (shown with red trajectory) to reach a
target point while the left hand remains stationary. The blue line
represents the cooperative line primitive connecting the two wrists.

0 0.5 1 1.5 2 2.5
-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Time [s]

e01i
e02i
e12i
e03i
e13i
e23i

(b) Trajectory of the line parameters over time. The parameters change
as the right hand moves while the left hand remains fixed, showing
unconstrained evolution of the cooperative line primitive.

Figure 14. Asymmetric reaching task with a cooperative line
primitive. The right hand reaches a target point while the left
hand stays in place, allowing the cooperative line to change
freely.

21 degrees of freedom), where the cooperative geometric
primitive is a circle defined by the three end-effector points.
We task the system with reaching a target configuration
that is a geometric singularity, as shown in Figure 18. In
this configuration, the three end-effector points approach a
collinear arrangement, causing the circle to degenerate. Note
that we are not controlling the cooperative circle here, but
instead track its evolution while one end-effector reaches the
line formed by the other two.

The trajectory of the circle parameters over time is
shown in Figure 19a. As the system approaches the
singular configuration, several of the circle parameters drop
rapidly towards zero, indicating the degeneration of the
circle primitive. Correspondingly, the bivector trajectory
in Figure 19b shows a drastic change in the cooperative
similarity transformation. These large components reflect
that lines in CGA can essentially be seen as circles with
infinite radius (i.e. the similarity transformation becomes
infinite).

The effect of the geometric singularity on the system’s
manipulability is depicted in Figure 19c. As expected,
several components of the task space manipulability decrease
significantly when approaching the singularity, with some
dropping to zero values. This loss of manipulability indicates
that certain directions in the cooperative task space become

(a) The initial configuration of the robot is shown in white and the final
one in gray. Both hands move (shown with red trajectories) in a
coordinated manner to maintain the horizontal orientation of the
cooperative line primitive while the right hand reaches the target.

0 0.5 1 1.5 2 2.5
-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

Time [s]

e01i
e02i
e12i
e03i
e13i
e23i

(b) Trajectory of the line parameters over time. Compared to the
unconstrained case, the value of e03i remains constant, reflecting the
horizontal orientation constraint on the cooperative line primitive.

Figure 15. Constrained reaching task with a cooperative line
primitive. The right hand reaches a target point while the
cooperative line is constrained to remain horizontal, requiring
coordinated motion of both arms.

difficult or impossible to control, which is the property of a
singular configuration.

This example demonstrates that geometric singularities
present an important consideration for the control of
cooperative systems modeled by geometric primitives.
Unlike classical kinematic singularities that depend solely
on individual joint configurations, geometric singularities
are intrinsic to the cooperative task space representation
and can occur even when all individual manipulators
are far from their kinematic singularities. Strategies for
singularity avoidance in this context would need to monitor
the geometric properties of the cooperative primitive and
potentially modify the desired trajectory or task space
representation when approaching degenerate configurations.

4.5 Teleoperation Demonstration

In this section, we present teleoperation for controlling
complex robotic systems with a high number of degrees of
freedom. The purpose of the example is to demonstrate the
simplicity of the cooperative geometric primitives, and how
using the cooperative geometric primitives for modeling the
cooperative task space of multiple parallel kinematic chains
constrains the degrees of freedom and thus greatly facilitates
the control of these complex systems. While we simulate the
robotic systems, the input device is real hardware.

Prepared using sagej.cls

Löw et al. 17

(a) The trajectory of the first robot while being controlled towards the
target. Since the geometric nullspace is not considered, the robot
deviates from the circle.

0 4 8 12 16 20
-0.05

0
0.05

0.1
0.15

0.2

Time [s]

point distance
similarity distance

(b) Euclidean distance of the end-effector point to the target point
compared to similarity distance between the current cooperative
similarity transformation and the initial. Since the geometric nullspace is
not considered, the similarity distance is non-zero while the robot is
moving towards the target.

Figure 16. Cooperative task space of three Franka robots. The
first robot is controlled towards the target point (green). The
control is not considering the geometric nullspace, i.e. the
cooperative circle.

(a) The trajectory of the first robot while being controlled towards the
target. Since the task is executed in the geometric nullspace, the robot
stays on the circle.

0 4 8 12 16 20
-0.05

0
0.05

0.1
0.15

0.2

Time [s]

point distance
similarity distance

(b) Euclidean distance of the end-effector point to the target point
compared to similarity distance between the current cooperative
similarity transformation and the initial. Since the geometric nullspace is
considered, the similarity distance is zero while the robot is moving
towards the target.

Figure 17. Cooperative task space of three Franka robots. The
first robot is controlled towards the target point (green), while
considering the geometric nullspace, i.e. the cooperative circle.
The primary objective is keeping the cooperative similarity
transformation unchanged, which amounts to staying on the
circle.

We use a readily available six degree of freedom device
that is commonly used in CAD applications as a single input

Figure 18. Configuration of the three Franka robots
approaching a geometric singularity. The end-effector points
approach a collinear arrangement, causing the cooperative
circle primitive (shown in blue) to degenerate to a line (shown in
red). The initial robot configurations are shown with lighter color.

device to obtain the commands for the teleoperation. We then
map the six axes of the input device to a Lie algebra element
of the similarity transformation group, i.e. a bivector, that
then represents a task space command. The mapping of
the input device’s axes to the similarity transformations and
the corresponding motion of the robotic hand is shown in
Figure 20. We then use the differential kinematics from
Equation (48) to obtain a joint velocity command q̇. This
command is used in a first-order kinematics simulation, i.e.
we obtain the new joint position as

qt+1 = qt +∆tq̇, (61)

where the time step ∆t is chosen to be 0.01s.
We want to point out that the sphere in Figure 20 is only

visualizing the current cooperative sphere. It is, however,
not used for control, in the sense that the sphere is moved
and then tracked by the fingers. Instead, the controller from
Equation (48) causes a joint movement that then results
in the sphere changing accordingly. Since the cooperative
similarity transformation and the related geometric similarity
Jacobian capture all involved kinematic chains directly, all
fingers are controlled simultaneously. We want to further
demonstrate this important point by using the pure dilation
bivector command as an example. A pure dilation bivector
means that the bivector command is BS = log(d)e0∞,
where d ∈ R+ is the the scaling factor. More information on
the uniform scaling group can be found in Appendix A.3.
It can be inferred that d = 1 leaves the hand position
unchanged, d ∈ (0, 1) will close the hand, and d > 1 will
open it. We can therefore entirely control the opening and
closing of the hand using a single scalar. We show the effects
of this pure dilation command in Figure 21.

Here, we have shown the example for teleoperating the
Leap hand, which has 16 degrees of freedom. The same

Prepared using sagej.cls

18 Journal Title XX(X)

0 0.5 1 1.5 2 2.5
-1.25

-0.75

-0.25

0.25

0.75

1.25

1.75

2.25

2.75

3.25

3.75

Time [s]

e012
e013
e023
e123
e01i
e02i
e12i
e03i
e13i
e23i

(a) Trajectory of the circle primitive parameters over time. The
parameters drop rapidly to zero as the circle degenerates when the
three points approach collinearity.

0 0.5 1 1.5 2 2.5
-0.5

-0.25

0

0.25

0.5

Time [s]

e12
e13
e23
e0i
e1i
e2i
e3i

(b) Trajectory of the similarity transformation bivector. Several
components diverge, reflecting the large transformation for a line, i.e. a
circle with infinite radius.

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

8

9

10

Time [s]

(c) Eigenvalues of the task space manipulability over time. Several
components drop to zero values, indicating loss of controllability in
certain task space directions due to the geometric singularity.

Figure 19. Effect of geometric singularity in a cooperative
system of three Franka robots. The system passes through a
configuration where the circle primitive degenerates as the
three end-effector points become nearly collinear.

principles also apply to other systems. We show in the
accompanying video how we teleoperate a system of three
manipulators having 21 degrees, and a system of two
humanoids having 34 degrees of freedom. In all cases, we use
the simple six-axes device as an input, which shows how the
proposed modeling approach greatly simplifies the control of
complex robotic systems.

5 Discussion
Our unified control framework based on cooperative
similarity transformations generalizes the rigid body
transformation of a single robot’s end-effector to the
cooperative control of multiple kinematic chains. The
experimental results demonstrated this approach across a
variety of robotic systems, ranging from a bi-manual setup to

Figure 20. Teleoperation of an anthropomorphic hand. The
axes of teleoperation device on the left, are mapped to the
different similarity transformations as shown in the center. The
three principal axes map to the corresponding translations,
while the rotation around the z-axis is mapped to the dilation.
Rotations are not required, since a sphere is invariant to
rotations around its center. The resulting motion of the robotic
hand is then depicted on the right.

Figure 21. Example of the effect of a pure dilation command.
We use ∆t = 0.25s, with two dilation commands BS1 = −e0∞
and BS2 = e0∞ that correspond to d = 0.3679 and d = 2.718.
The original hand position is shown in the middle. The left
image shows the updated hand position after we apply the
dilation command BS1 and the right image shows the updated
hand position after we apply the dilation command BS2.

scenarios involving collaborating humanoids. Given that the
framework is purely geometric, and considering the variety
of systems explored, the kinematic simulations show both the
strengths and limitations of our method, which are further
discussed in the following subsections.

5.1 Connection to Traditional Single-Arm
Control

Throughout this article, we have mentioned several times that
the cooperative similarity transformation and its Jacobians
fulfill the same role as the rigid body transformation to
the robot end-effector that is used in single-arm systems.
Since similarity transformations form a seven-dimensional
manifold, as opposed to the six-dimensional one of rigid
body transformations, the modeling using the cooperative
similarity transformations only introduces one additional
dimension to achieve cooperative control behaviors of
highly complex robotic systems. Although the involved
mathematics that we derived in this article might seem
unfamiliar, all the findings in the literature for traditional
control methods of single-arm systems remain valid and are
directly applicable to the scenarios shown in this article.
We have shown this via differential kinematics control in

Prepared using sagej.cls

Löw et al. 19

the teleoperation experiments in Section 4.5. This further
highlights how the cooperative modeling greatly facilitates
the control of complex robotic systems.

5.2 Geometric Nullspace
The systems considered in our experiments range from a
bimanual setup with 14 degrees of freedom (DoF) (see
Figure 22a) to collaborating humanoids with 34 DoF in total.
The resulting systems are highly redundant, and thus are
inherently challenging to control. Even when restricted to
the task space, the dimensionality remains high, i.e. ranging
from 12 to 24 DoF. Notably, encoding the cooperative
task space using geometric primitives significantly reduces
the effective dimensionality of the problem. The similarity
transformations associated with these primitives have at most
7 DoF, accounting for translation, rotation, and uniform
scaling. Depending on the symmetry of the primitive, the
effective number of DoF can be even lower. For instance,
a sphere (see Figure 12a) admits only 4 DoF, as rotation
does not alter its configuration. As can be inferred from the
teleoperation experiment given in Figure 20, this reduction in
dimensionality is critical: no teleoperation device exists for
28-DoF systems, nor can a human or an existing algorithm
feasibly control such a high-dimensional system directly.
In contrast, using our proposed method for controlling the
translation and dilation of a target sphere is straightforward.

(a) The line nullspace formed by two Franka robots. Each robot’s
end-effector is free to move along the line unrestricted. Secondary
control objectives tangential to the line will not change the line.

(b) The plane nullspace formed by three Franka robots. Each robot’s
end-effector is free to move in the plane unrestricted. Secondary control
objectives tangential to the plane will not change the plane.

Figure 22. Geometric nullspaces that admit the introduction of
secondary control objectives. Perturbations that are orthogonal
to the geometric primitives will be rejected. The definition of
these geometric nullspaces is coordinate-free.

A second key aspect of the redundancy resolution arises
from the use of geometric nullspaces. Geometric primitives
naturally define subspaces of the underlying algebra, giving
rise to geometric nullspace formulations for control. This
structure ensures that the controller is inherently stiff when

the system deviates from the primitive, and compliant when
moving along it, as we previously showed in the context of
optimal control for a single robotic arm Löw and Calinon
2023. This principle extends directly to the cooperative
geometric primitives introduced in this work, as illustrated
in Figures 22a and 22b.

The geometric nullspaces induced by these primitives
enable a decoupling of orthogonal control objectives in a
coordinate-free manner, while eliminating the need for basis-
specific representations or manual tuning of off-diagonal
matrix terms. For example, aligning the end-effector with
a target line does not constrain motion along the line,
enabling the controlled application of contact forces in that
direction. We previously demonstrated this feature with a
single robot in an impedance control application on curved
surfaces Bilaloglu, Löw, and Calinon 2025. As shown in
Figure 22a, this property naturally extends to cooperative
settings, such as coordinated object lifting.

Similarly, in the case of cooperative reaching toward a
plane, optimization yields the closest configuration due to the
presence of a geometric nullspace, as shown in Figure 22b.
Although not illustrated here for brevity, this principle
generalizes to other geometric primitives such as circles and
spheres. For example, when four robotic arms cooperatively
maintain a spherical constraint, they can move compliantly
along the tangent directions of the sphere’s surface without
violating the constraint, while the controller remains stiff in
directions orthogonal to the sphere.

5.3 Singularities of Cooperative Primitives
Singularities in kinematic chains typically result in the loss
of one or more degrees of freedom. These configurations
are characterized by a degenerate Jacobian matrix that loses
full rank. Similarly, singularities can arise in cooperative
geometric primitives when the primitive is no longer
uniquely defined. To illustrate this, consider the example of
the circle primitive. If all three end-effector points lie on a
straight line, the defining circle degenerates into a line. In the
conformal geometric model, lines are interpreted as circles
with infinite radius. As a result, the cooperative primitive
becomes ill-defined, and its behavior cannot be uniquely
determined.

These degeneracies produce effects akin to conventional
singularities: it becomes ambiguous which end-effector
should move, and the associated geometric Jacobian grows
unbounded as the three points approach co-linearity. While
such configurations are rare and typically do not disrupt
control in practice, we included manipulability matrices for
the geometric primitives in Section 3.11 to provide tools for
analyzing and avoiding these cases. Just as manipulability
is used to avoid singularities in single-robot systems, these
matrices can be employed alongside standard techniques for
singularity-avoiding cooperative control.

5.3.1 Conditions for Well-Definedness The cooperative
geometric primitive Xc(q) defined in Equation (14) is well-
defined if and only if the outer product of the defining points
yields a non-degenerate geometric entity. This requirement
imposes geometric constraints on the relative positions of the
end-effector points. Specifically:

Prepared using sagej.cls

20 Journal Title XX(X)

• Pointpair/Line: Two points must be distinct, i.e.,
P1 ̸= P2. When the points coincide, the pointpair
degenerates to a single point.

• Circle/Plane: Three points must be non-collinear.
When the three points lie on a straight line, the circle
degenerates to a line (or equivalently, a circle with
infinite radius in CGA).

• Sphere: Four points must be non-coplanar. When
all four points lie in the same plane, the sphere
degenerates to a plane.

As the system approaches these degenerate configurations,
the cooperative geometric primitive becomes increasingly
ill-defined. In the limiting case, the primitive cannot uniquely
determine the cooperative similarity transformation VSc(q),
and the control objective loses its geometric meaning.

5.3.2 Rank Deficiency and Jacobian Conditioning The
cooperative Jacobian matrices derived in Section 3.4
maintain sufficient rank as long as the cooperative primitive
remains well-defined and the individual manipulator
Jacobians are not singular. However, near degenerate
configurations, the cooperative Jacobian exhibits poor
conditioning and may lose rank.

Consider the example of a cooperative circle approaching
collinearity as shown in Section 4.4. As the three defining
points align, the radius of the circle grows unbounded, and
certain components of the similarity transformation become
ambiguous. Consequently, the geometric similarity Jacobian
J G

Sc(q) grows unbounded in specific directions, similar to
the behavior observed near kinematic singularities in single-
arm systems.

The manipulability analysis presented in Section 3.11
provides a quantitative measure for detecting such configura-
tions. The manipulability ellipsoid MS(q) becomes increas-
ingly elongated as degeneracy is approached, with one or
more eigenvalues tending toward zero. This behavior can
be exploited to implement singularity avoidance strategies,
analogous to those used in traditional manipulator control.

5.3.3 Practical Implications and Mitigation Strategies
In practice, the limitations discussed above can be
mitigated through singularity avoidance strategies using
the manipulability measure from Section 3.11 to detect
and avoid degenerate configurations, similar to standard
techniques in single-arm control. While these challenges are
inherent to the cooperative primitive framework, they are not
fundamentally different from the analogous challenges faced
in traditional multi-robot coordination or single-arm control
near singularities. The key distinction is that the cooperative
geometric primitive provides an explicit, coordinate-free
characterization of the degenerate configurations, making
them easier to detect and avoid.

5.4 Extension to Arbitrary Contact Points on
the Robot Body

In this article, we presented cooperative geometric primitives
with respect to end-effector points. While this is a reasonable
and fairly standard assumption, since the end-effector
typically has the highest manipulability and can be equipped
with a tool or sensor, there are many scenarios in which it

is desirable to define cooperative geometric primitives with
respect to arbitrary points on the robot’s body.

For example, when carrying a large and bulky object,
humans often use additional contact points such as the
torso to help distribute the load and improve stability. We
illustrated a preliminary example of this idea in Figure 9a,
where the torso of a humanoid robot was used to define the
third point of a cooperative circle.

In the general case, however, this requires to define a
distance function from the robot surface to the geometric
primitives and use its Jacobian to guide the optimization.
Accordingly, the optimization can select these points
dynamically, depending on the task requirements.

5.5 Extension to Human-Robot Collaboration
In Figures 10a and 13a, we presented experiments involving
humanoid robots. With a slight change in perspective, these
humanoids can be interpreted as abstractions of humans in a
human-robot collaboration setting. This observation suggests
that cooperative geometric primitives could also be applied
to model scenarios involving human-robot collaboration.

The primary distinction between a human and a humanoid
robot lies in controllability: the human’s motion cannot be
directly controlled. As a result, the system must adopt a
leader-follower control paradigm, where the human acts as
the leader and the robot as the follower. The robot then
adapts its end-effector motion in response to the human’s
hand movements, in order to maintain a desired cooperative
primitive, such as a circle or a sphere, defined by the
relative positions of the human hand and the robot end-
effector(s). Due to the benefits of using the cooperative
geometric primitives, the resulting control scheme would
remain geometrically consistent.

5.6 Extension to n Kinematic Chains
While we presented control strategies for up to four parallel
kinematic chains, this practical limitation only stems from
our choice of algebra, i.e. conformal geometric algebra
G4,1. Here, CGA is the smallest algebra that allows for
the representation of geometric primitives capturing the
collaborative behaviour of up to four parallel kinematic
chains. This choice is justified, since three and four-fingered
hands are common and able to secure a grasp by removing
all DoFs of a target object. Hence, we want to point out
that this limitation is only of practical nature, but not of
theoretical one. More concretely, using a different choice
of the underlying quadratic space (Rp,q,r, g(x,x)), the
corresponding geometric algebra Gp,q,r would allow for the
representation of more parallel kinematic chains, such as in
the case of five-fingered hands. The presented results based
on the derivation of the collaborative geometric primitives
would remain valid.

5.7 Different Types of Geometric Primitives
In this work, we described the general cooperative similarity
task spaces for multiple parallel kinematic chains. We
wanted to emphasize the usage of the cooperative similarity
transformation as an equivalent to the end-effector pose.
Thus, in our control and optimization examples, we always
assumed the target geometric primitives to be of the same

Prepared using sagej.cls

Löw et al. 21

type as the task space geometry, as listed in Table 1. In
general, however, it is possible to formulate task objectives
and constraints involving different types of geometric
primitives. In principle, this could be approached via the
outer product minimization that we presented for a single
manipulator in Löw and Calinon 2023, where cooperative
geometric primitive could then be used to reach a desired
point. Geometric relationships, such as intersections between
primitives, can also be fully described in the algebra, and
thus can be used in optimization problems. Note that these
relationships are well-defined, i.e. they will always yield
a mathematically valid result even if the primitives do not
intersect.

5.8 Numerical Analysis
A critical numerical consideration in the implementation of
our framework concerns the conditioning of the logarithmic
map used to extract similarity bivectors from versors.
The logarithmic maps for rotors, translators, dilators, and
similarity transformations presented in Appendix A all
involve trigonometric functions in their denominators. The
primary source of numerical instability arises when the
rotation angle is a whole multiple of π, which manifests
as the scalar part of the rotor ⟨VR⟩0 approaching ±1. In
these configurations, the denominator sin(cos−1(⟨VR⟩0))
in Equation (63) becomes zero, leading to division by
zero. These singular cases are straightforward to detect
by monitoring the scalar component |⟨VR⟩0| of the rotor
before computing the logarithm. Note that rotors are
essentially identical to quaternions, and therefore the
same challenges and solutions to the conditioning of the
logarithmic map apply. Similar considerations apply to the
other transformation groups, though the rotation component
typically presents the most significant numerical challenge.

5.9 Computational Efficiency
A similarity bivector BS ∈ BS requires storage of 7
scalar components, while the corresponding similarity
transformation versor VS ∈ S requires 12 components (1
scalar, 7 bivector, and 4 quadvector components). The
geometric product of two similarity transformations requires
112 floating-point multiplications and 100 additions,
according to the geometric product rules where certain blade
combinations are known to result in zero. For a single
manipulator, a homogeneous transformation matrix in SE(3)
maps the end effector pose to the target pose through a
single matrix product. Exploiting the zeros in the last row
of the homogeneous matrices, this multiplication requires
about 39 multiplications and 34 additions. Consequently,
for three or more independent kinematic chains, the total
number of operations required by similarity transforms or
by separate rigid body transformations similar in terms
of computational complexity. Considering the fact that the
similarity transformations encode up to four kinematic
chains, this computational overhead is acceptable, since it
in turns enables more efficient constraint evaluation on all
kinematic chains simultaneously. An in-depth comparison
of dual quaternions (i.e. the rigid transformation part of the
similarity transformations) versus transformation matrices
can be found in Dantam 2021.

5.10 Practical Considerations
In this article, the results that we have shown based on
our mathematical formulations are all in simulation. Our
emphasis is on the theoretical derivations and implications
of this novel modeling approach for cooperative systems of
multiple parallel kinematic chains. However, we presented
all the necessary tools for using our approach in practice.
The three different control approaches shown in Section 4
all yield valid joint space commands that can be used on
real systems. Of course, the gain parameters, such as the
stiffness and damping, would need to be tuned for a real
system. Apart from that, a potential issue are non-zero joint
velocities despite reaching the target. This is an inherent
issue of redundant systems that can be solved using various
methods that add dissipative terms in the nullspace while
preserving passivity.

6 Conclusion
In this work, we introduced a framework for modeling
the cooperative task space of multiple parallel kinematic
chains through the integration of cooperative geometric
primitives and similarity transformations. By deriving the
mathematical foundations of this approach, we demonstrated
that cooperative geometric primitives offer a powerful
abstraction for simplifying the representation and analysis
of complex robotic systems, particularly those with a high
number of degrees of freedom. This abstraction reduces
the inherent modeling complexity by encapsulating intricate
kinematic interactions into unified geometric constructs,
enabling intuitive and scalable coordination strategies. In this
article, we focused on the mathematical derivation of the
cooperative task spaces based on the geometric primitives
and presented their application in abstract experiments in
order to preserve generality. Hence, this work offers various
interesting extension opportunities that could be addressed in
future work.

Our formulation of the cooperative similarity transforma-
tion presents a direct link to classical control methods. Based
on the cooperative similarity transformation, we derived an
analytic and geometric Jacobian that can be used in standard
control techniques. We demonstrated this using optimal
control and teleoperation with differential kinematics as
examples. Even though the controlled systems have a high
number of degrees of freedom, the controller based on the
similarity transformation is almost identical to single-arm
controllers, and only adds a single dimension for control-
ling the dilation. Combined with the concept of geometric
nullspaces, which decouple orthogonal control objectives in
a coordinate-free manner, we have derived the theory of
a versatile control framework that leverages the algebraic
properties of geometric primitives. Our experiments have
shown the general applicability of this control formulation.
Actual real-world tasks, however, will require more complex
modeling approaches, where different geometric primitives
are combined in a single objective function in order to repre-
sent the task constraints. We will address this in future work
by focusing on the applications, while using the findings
of this article as the theoretical foundations. These applica-
tions could include the modeling of human-robot collabo-
ration tasks, where the cooperative geometric primitives are

Prepared using sagej.cls

22 Journal Title XX(X)

used to implement geometrically consistent leader-follower
paradigms that exploit the inherent nullspaces.

Acknowledgements

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

Funding

This work was supported by the State Secretariat for Education,
Research and Innovation in Switzerland for participation in the
European Commission’s Horizon Europe Program through the
INTELLIMAN project (https://intelliman-project.eu/, HORIZON-
CL4-Digital-Emerging Grant 101070136) and the SESTOSENSO
project (http://sestosenso.eu/, HORIZON-CL4-Digital-Emerging
Grant 101070310).

References
Adorno, Bruno Vilhena, Philippe Fraisse, and Sébastien Druon (Oct. 2010).

“Dual Position Control Strategies Using the Cooperative Dual Task-
Space Framework”. In: IEEE International Conference on Intelligent
Robots and Systems (IROS), pp. 3955–3960. DOI: 10.1109/IROS.
2010.5650218.

Aladele, Victor, Carlos R. De Cos, Dimos V. Dimarogonas, and Seth
Hutchinson (Dec. 2022). “An Adaptive Cooperative Manipulation
Control Framework for Multi-Agent Disturbance Rejection”. In: IEEE
Conference on Decision and Control (CDC), pp. 100–106. DOI: 10.
1109/CDC51059.2022.9992478.

Aljalbout, Elie and Maximilian Karl (June 2023). “CLAS: Coordinating
Multi-Robot Manipulation with Central Latent Action Spaces”. In:
Proceedings of The 5th Annual Learning for Dynamics and Control
Conference. Vol. 211. PMLR, pp. 1152–1166.

Bilaloglu, Cem, Tobias Löw, and Sylvain Calinon (2025). “Tactile Ergodic
Coverage on Curved Surfaces”. In: IEEE Transactions on Robotics 41,
pp. 1421–1435. DOI: 10.1109/TRO.2025.3532513.

Bircher, Walter G., Andrew S. Morgan, and Aaron M. Dollar (May 2021).
“Complex Manipulation with a Simple Robotic Hand through Contact
Breaking and Caging”. In: Science Robotics 6.54, eabd2666. DOI: 10.
1126/scirobotics.abd2666.

Carey, Nicole E. and Justin Werfel (2024). “A Force-Mediated Controller
for Cooperative Object Manipulation with Independent Autonomous
Robots”. In: Distributed Autonomous Robotic Systems. Ed. by Julien
Bourgeois et al. Vol. 28. Cham: Springer Nature Switzerland, pp. 140–
155. DOI: 10.1007/978-3-031-51497-5_11.

Dantam, Neil T (Sept. 2021). “Robust and Efficient Forward, Differential,
and Inverse Kinematics Using Dual Quaternions”. In: The International
Journal of Robotics Research 40.10-11, pp. 1087–1105. DOI: 10 .
1177/0278364920931948.

De Pascali, Luca, Sebastian Erhart, Luca Zaccarian, Biral Francesco, and
Sandra Hirche (Feb. 2022). “A Decoupling Scheme for Force Control
in Cooperative Multi-Robot Manipulation Tasks”. In: 2022 IEEE 17th
International Conference on Advanced Motion Control (AMC), pp. 243–
249. DOI: 10.1109/AMC51637.2022.9729263.

Erhart, Sebastian, Dominik Sieber, and Sandra Hirche (Nov. 2013). “An
Impedance-Based Control Architecture for Multi-Robot Cooperative
Dual-Arm Mobile Manipulation”. In: 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 315–322. DOI: 10.
1109/IROS.2013.6696370.

Farivarnejad, Hamed and Spring Berman (May 2022). “Multirobot Control
Strategies for Collective Transport”. In: Annual Review of Control,
Robotics, and Autonomous Systems 5.1, pp. 205–219. DOI: 10.1146/
annurev-control-042920-095844.

Ferrentino, Enrico, Heitor J. Savino, Antonio Franchi, and Pasquale
Chiacchio (Oct. 2024). “A Dynamic Programming Framework for
Optimal Planning of Redundant Robots Along Prescribed Paths With
Kineto-Dynamic Constraints”. In: IEEE Transactions on Automation
Science and Engineering 21.4, pp. 6744–6757. DOI: 10.1109/TASE.
2023.3330371.

Franceschi, Paolo, Andrea Bussolan, Vincenzo Pomponi, Oliver Avram,
Stefano Baraldo, and Anna Valente (June 2025). Human-Robot
Collaborative Transport Personalization via Dynamic Movement
Primitives and Velocity Scaling. DOI: 10.48550/arXiv.2506.
09697.

Gao, Jianfeng, Xiaoshu Jin, Franziska Krebs, Noémie Jaquier, and Tamim
Asfour (May 2024). “Bi-KVIL: Keypoints-based Visual Imitation
Learning of Bimanual Manipulation Tasks”. In: 2024 IEEE International
Conference on Robotics and Automation (ICRA), pp. 16850–16857. DOI:
10.1109/ICRA57147.2024.10610763.

Gao, Jianfeng, Zhi Tao, Noémie Jaquier, and Tamim Asfour (Oct.
2023). “K-VIL: Keypoints-Based Visual Imitation Learning”. In: IEEE
Transactions on Robotics 39.5, pp. 3888–3908. DOI: 10.1109/TRO.
2023.3286074.

Gao, Wei and Russ Tedrake (Apr. 2021). “kPAM 2.0: Feedback Control
for Category-Level Robotic Manipulation”. In: IEEE Robotics and
Automation Letters 6.2, pp. 2962–2969. DOI: 10.1109/LRA.2021.
3062315.

Haug, Edward J. (Dec. 2023). “Redundant Serial Manipulator Inverse
Position Kinematics and Dynamics”. In: Journal of Mechanisms and
Robotics 16.081008. DOI: 10.1115/1.4064047.

He, Yanhao, Min Wu, and Steven Liu (Jan. 2020). “An Optimisation-
Based Distributed Cooperative Control for Multi-Robot Manipulation
with Obstacle Avoidance”. In: IFAC-PapersOnLine. 21st IFAC World
Congress 53.2, pp. 9859–9864. DOI: 10.1016/j.ifacol.2020.
12.2691.

— (May 2022). “A Distributed Optimal Control Framework for Multi-
Robot Cooperative Manipulation in Dynamic Environments”. In: Journal
of Intelligent & Robotic Systems 105.1, p. 8. DOI: 10.1007/s10846-
022-01621-4.

Huang, Wenlong, Chen Wang, Yunzhu Li, Ruohan Zhang, and Li Fei-Fei
(Jan. 2025). “ReKep: Spatio-Temporal Reasoning of Relational Keypoint
Constraints for Robotic Manipulation”. In: Proceedings of The 8th
Conference on Robot Learning. PMLR, pp. 4573–4602.

Kadalagere Sampath, Suhas, Ning Wang, Hao Wu, and Chenguang Yang
(2023). “Review on Human-like Robot Manipulation Using Dexterous
Hands”. In: Cognitive Computation and Systems 5.1, pp. 14–29. DOI:
10.1049/ccs2.12073.

Khatib, O. (Feb. 1987). “A Unified Approach for Motion and Force Control
of Robot Manipulators: The Operational Space Formulation”. In: IEEE
Journal on Robotics and Automation 3.1, pp. 43–53. DOI: 10.1109/
JRA.1987.1087068.

Lasenby, J., H. Hadfield, and A. Lasenby (Oct. 2019). “Calculating the Rotor
Between Conformal Objects”. In: Advances in Applied Clifford Algebras
29.5, p. 102. DOI: 10.1007/s00006-019-1014-8.

Löw, Tobias and Sylvain Calinon (Oct. 2023). “Geometric Algebra for
Optimal Control With Applications in Manipulation Tasks”. In: IEEE
Transactions on Robotics 39.5, pp. 3586–3600. DOI: 10.1109/TRO.
2023.3277282.

— (May 2024). “Extending the Cooperative Dual-Task Space in Conformal
Geometric Algebra”. In: 2024 IEEE International Conference on
Robotics and Automation (ICRA). Yokohama, Japan: IEEE, pp. 14882–
14887. DOI: 10.1109/ICRA57147.2024.10610558.

Manuelli, Lucas, Wei Gao, Peter Florence, and Russ Tedrake (2022).
“KPAM: KeyPoint Affordances for Category-Level Robotic Manipula-
tion”. In: Robotics Research. Ed. by Tamim Asfour, Eiichi Yoshida, Jae-
heung Park, Henrik Christensen, and Oussama Khatib. Cham: Springer
International Publishing, pp. 132–157. DOI: 10.1007/978-3-030-
95459-8_9.

Patel, Vatsal V. and Aaron M. Dollar (Sept. 2021). “Robot Hand Based
on a Spherical Parallel Mechanism for Within-Hand Rotations about a
Fixed Point”. In: 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Prague, Czech Republic: IEEE, pp. 709–
716. DOI: 10.1109/IROS51168.2021.9636704.

Perwass, Christian (2009). Geometric Algebra with Applications in
Engineering. Geometry and Computing 4. Berlin: Springer.

Prepared using sagej.cls

https://doi.org/10.1109/IROS.2010.5650218
https://doi.org/10.1109/IROS.2010.5650218
https://doi.org/10.1109/CDC51059.2022.9992478
https://doi.org/10.1109/CDC51059.2022.9992478
https://doi.org/10.1109/TRO.2025.3532513
https://doi.org/10.1126/scirobotics.abd2666
https://doi.org/10.1126/scirobotics.abd2666
https://doi.org/10.1007/978-3-031-51497-5_11
https://doi.org/10.1177/0278364920931948
https://doi.org/10.1177/0278364920931948
https://doi.org/10.1109/AMC51637.2022.9729263
https://doi.org/10.1109/IROS.2013.6696370
https://doi.org/10.1109/IROS.2013.6696370
https://doi.org/10.1146/annurev-control-042920-095844
https://doi.org/10.1146/annurev-control-042920-095844
https://doi.org/10.1109/TASE.2023.3330371
https://doi.org/10.1109/TASE.2023.3330371
https://doi.org/10.48550/arXiv.2506.09697
https://doi.org/10.48550/arXiv.2506.09697
https://doi.org/10.1109/ICRA57147.2024.10610763
https://doi.org/10.1109/TRO.2023.3286074
https://doi.org/10.1109/TRO.2023.3286074
https://doi.org/10.1109/LRA.2021.3062315
https://doi.org/10.1109/LRA.2021.3062315
https://doi.org/10.1115/1.4064047
https://doi.org/10.1016/j.ifacol.2020.12.2691
https://doi.org/10.1016/j.ifacol.2020.12.2691
https://doi.org/10.1007/s10846-022-01621-4
https://doi.org/10.1007/s10846-022-01621-4
https://doi.org/10.1049/ccs2.12073
https://doi.org/10.1109/JRA.1987.1087068
https://doi.org/10.1109/JRA.1987.1087068
https://doi.org/10.1007/s00006-019-1014-8
https://doi.org/10.1109/TRO.2023.3277282
https://doi.org/10.1109/TRO.2023.3277282
https://doi.org/10.1109/ICRA57147.2024.10610558
https://doi.org/10.1007/978-3-030-95459-8_9
https://doi.org/10.1007/978-3-030-95459-8_9
https://doi.org/10.1109/IROS51168.2021.9636704

Löw et al. 23

Pfanne, Martin, Maxime Chalon, Freek Stulp, Helge Ritter, and Alin Albu-
Schäffer (Apr. 2020). “Object-Level Impedance Control for Dexterous
In-Hand Manipulation”. In: IEEE Robotics and Automation Letters 5.2,
pp. 2987–2994. DOI: 10.1109/LRA.2020.2974702.

Saveriano, Matteo, Fares J Abu-Dakka, Aljaž Kramberger, and Luka
Peternel (Nov. 2023). “Dynamic Movement Primitives in Robotics: A
Tutorial Survey”. In: The International Journal of Robotics Research
42.13, pp. 1133–1184. DOI: 10.1177/02783649231201196.

Scheikl, Paul Maria, Nicolas Schreiber, Christoph Haas, Niklas Freymuth,
Gerhard Neumann, Rudolf Lioutikov, and Franziska Mathis-Ullrich
(June 2024). “Movement Primitive Diffusion: Learning Gentle Robotic
Manipulation of Deformable Objects”. In: IEEE Robotics and
Automation Letters 9.6, pp. 5338–5345. DOI: 10.1109/LRA.2024.
3382529.

Sidiropoulos, Antonis, Yiannis Karayiannidis, and Zoe Doulgeri (June
2019). “Human-Robot Collaborative Object Transfer Using Human
Motion Prediction Based on Dynamic Movement Primitives”. In: 2019
18th European Control Conference (ECC), pp. 2583–2588. DOI: 10.
23919/ECC.2019.8796249.

Sieber, Dominik, Frederik Deroo, and Sandra Hirche (Nov. 2013).
“Formation-Based Approach for Multi-Robot Cooperative Manipulation
Based on Optimal Control Design”. In: 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Tokyo: IEEE, pp. 5227–
5233. DOI: 10.1109/IROS.2013.6697112.

Sieber, Dominik and Sandra Hirche (July 2019). “Human-Guided
Multirobot Cooperative Manipulation”. In: IEEE Transactions on
Control Systems Technology 27.4, pp. 1492–1509. DOI: 10 . 1109 /
TCST.2018.2813323.

Silverio, Joao, Leonel Rozo, Sylvain Calinon, and Darwin G. Caldwell
(Sept. 2015). “Learning Bimanual End-Effector Poses from Demon-
strations Using Task-Parameterized Dynamical Systems”. In: 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Hamburg: IEEE, pp. 464–470. DOI: 10.1109/IROS.2015.
7353413.

Spletzer, J., A.K. Das, R. Fierro, C.J. Taylor, V. Kumar, and J.P.
Ostrowski (Oct. 2001). “Cooperative Localization and Control for Multi-
Robot Manipulation”. In: Proceedings 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Expanding the Societal
Role of Robotics in the the Next Millennium (Cat. No.01CH37180).
Vol. 2, 631–636 vol.2. DOI: 10.1109/IROS.2001.976240.

Yao, Kunpeng and Aude Billard (2023). “Exploiting Kinematic Redundancy
for Robotic Grasping of Multiple Objects”. In: 39.3, pp. 1982–2002. DOI:
10.1109/TRO.2023.3253249.

A Transformation Groups in CGA
The geometric product of n vectors xi ∈ G4,1, i.e. V =∏n

i=1 xi, forms the set of versors that combined with
the geometric product form the Clifford group Γ(4, 1).
The restrictions to V V −1 = ±1 or V V −1 = 1, yield the
groups Pin(4, 1) and Spin(4, 1), respectively. Note that
these groups are double covers of the matrix Lie groups
O(4, 1) and SO(4, 1), i.e. the orthogonal and special
orthogonal groups. In general, this means that CGA allows
for the representation of conformal transformations in R3

as a product of vectors instead of highly non-linear matrix
expressions, since O(4, 1) is isomorphic to the group of
conformal transformations Conf(3).

In the following, we list the different transformations
groups of CGA. We focus on the subgroups of Spin+(4, 1),
i.e. we include only versors that are comprised of an
even number of reflections in hyperplanes. This means that
we omit pure reflections, since we are only interested in
transformations that preserve the handedness.

A.1 Rotation Group
The group of rotations in three-dimensional Euclidean space
is usually represented by the special orthogonal group

SO(3), i.e. a matrix Lie group. The group Spin(3) is its
double-cover and can be represented as unit quaternions.
In CGA, it is the rotors that form an isomorphic group to
unit quaternions and we denote them here as R. Their Lie
algebra is the bivector algebra BR = span {e12, e13, e23}.
Given the elements VR ∈ R and BR ∈ BR, the exponential
map expR : BR → R and its inverse the logarithmic map
logR : R → BR are

VR =exp(BR)

= cos

(
1

2
∥BR∥

)
− sin

(
1

2
∥BR∥

)
∥BR∥−1BR,

(62)

and

BR = log(VR) =
−2 cos−1

(
⟨VR⟩0

)
sin

(
cos−1

(
⟨VR⟩0

)) ⟨VR⟩2 . (63)

A.2 Translation Group
The translation group of R3 is the Euclidean space itself
under the addition operation, i.e. (R3,+), which is often
shortened to simply R3. In CGA, this group can be
represented in versor form. Here, we denote the translation
group containing all translator versor in CGA as T . Note
that, unlike the rotation group in CGA, the group T is
not a double-cover of (R3,+), since (R3,+) is already a
simply-connected group. The Lie algebra of the group T
is the bivector algebra BT = span {e1∞, e2∞, e3∞}. Given
the elements VT ∈ T and BT ∈ BT , the exponential map
expT : BT → T and its inverse the logarithmic map logT :
T → BT are

VT = exp (BT) = 1− 1

2
BT , (64)

and
BT = log(VT) = −2 ⟨VT ⟩2 . (65)

In general, the translation bivector BT can be found from a
Euclidean vector t ∈ R3 as

BT = t ∧ e∞. (66)

A.3 Uniform Scaling Group
Uniform scaling is a transformation that preserves geometric
similarity, i.e. the shape, proportions, angles and orientation
as well as parallelism and collinearity are preserved while
distances are changed by an isotropic scaling factor. Here,
we restrict uniform scaling to positive scalars R+ to preserve
the handedness as well. In CGA, the versor achieving this is
called a dilator VD and consequently the set of all dilators
is the dilation group D, with its corresponding bivector Lie
algebra BD = span {e0∞}. Given the elements VD ∈ D and
BD ∈ BD, the exponential map expD : BD → D and its
inverse the logarithmic map logD : D → BD are

VD =exp (BD)

= cosh

(
1

2
∥BD∥

)
− sinh

(
1

2
∥BD∥

)
e0∞,

(67)

Prepared using sagej.cls

https://doi.org/10.1109/LRA.2020.2974702
https://doi.org/10.1177/02783649231201196
https://doi.org/10.1109/LRA.2024.3382529
https://doi.org/10.1109/LRA.2024.3382529
https://doi.org/10.23919/ECC.2019.8796249
https://doi.org/10.23919/ECC.2019.8796249
https://doi.org/10.1109/IROS.2013.6697112
https://doi.org/10.1109/TCST.2018.2813323
https://doi.org/10.1109/TCST.2018.2813323
https://doi.org/10.1109/IROS.2015.7353413
https://doi.org/10.1109/IROS.2015.7353413
https://doi.org/10.1109/IROS.2001.976240
https://doi.org/10.1109/TRO.2023.3253249

24 Journal Title XX(X)

and
BD = log(VD) = 2 cosh−1

(
⟨VD⟩0

)
e0∞, (68)

where the bivector BD then relates to the scaling factor
d ∈ R+ via

BD = log(d)e0∞. (69)

Note that, the scaling is always with respect to the origin.

A.4 Rigid Transformation Group
The group of rigid transformations in Euclidean space is
the most commonly used group in robotics. Traditionally,
it is represented by the matrix Lie group SE(3) called the
special Euclidean group. Alternative representations, such
as dual quaternions, are representations of Spin(3)⋉R3,
which is the double-cover of SE(3). Here, we denote this
group as M and usually call its elements motors VM . The
group is found as M = R⋉ T , and we define the canonical
decomposition of an element VM ∈ M as

VM = VTVR. (70)

The Lie algebra of M is the bivector algebra BM =
span {e12, e13, e23, e1∞, e2∞, e3∞} and an element BM ∈
BM is decomposed as

BM = BT +BR. (71)

Consequently, given the elements VM ∈ M and BM ∈
BM , the exponential map expM : BM → M and its inverse
the logarithmic map logM : M → BM are

VM = exp (BM) = exp (BT) exp (BR) , (72)

and
BM = log(VM) = log (VT) + log (VR) . (73)

A.5 Similarity Group
The Lie group of direct similarity transformations combines
translations, rotations and uniform scaling. In terms of
the matrix Lie groups it can be found as the semi-
direct product of the special Euclidean group and positive
scalars, i.e. SIM(3) = SE(3)⋊R+. Its double-cover
representation using the spin groups found in geometric
algebras therefore is

(
Spin(3)⋉R3

)
⋊R+. Here, we

denote the versor representation of the similarity group in
CGA as S = M⋊D = (R⋉ T)⋊D and we define the
canonical decomposition of an element VS ∈ S as

VS = VTVRVD. (74)

The Lie algebra of S is the bivector algebra BS =
span {e12, e13, e23, e0∞, e1∞, e2∞, e3∞} and an element
BS ∈ BS is decomposed as

BS = BT +BR +BD. (75)

Consequently, given the elements VS ∈ S and BS ∈ BS ,
the exponential map expS : BS → S and its inverse the
logarithmic map logS : S → BS are

VS = exp (BS) = exp (BT) exp (BR) exp (BD) , (76)

and

BS = log(VS) = log (VT) + log (VR) + log (VD) . (77)

B Jacobians

B.1 Normalizing a Multivector
Given a multivector X , where XX̃ ∈ R, it can be normalized
as

X̄ = X
∣∣∣XX̃

∣∣∣− 1
2

. (78)

For a multivector valued function X = F (x), we can then
find its derivative as

∂

∂x
F̄ (x) =

∣∣∣XX̃
∣∣∣− 1

2 J F

− 1

2

∣∣∣XX̃
∣∣∣− 3

2
(
X(J F X̃ +XJ̃ F)

)
.

(79)

B.2 Inverting a Multivector
Given a multivector X , where XX̃ ∈ R, its inverse can be
found as

X−1 = X̃
(
XX̃

)−1

. (80)

For a multivector valued function X = F (x), we can then
find its derivative as

∂

∂x
F−1(x) =

(
XX̃

)−1

J̃ F

− 2
(
XX̃

)−2

X̃
〈
XJ̃ F

〉
0
.

(81)

B.3 Analytic Circle Similarity Jacobian
Here, we derive the analytic similarity Jacobian J A

S,c(q),
given the cooperative geometric primitive Xc(q) and the
corresponding Jacobian J A

c (q) from Equation (15). As
shown in Equation (29), we can decompose the analytic
similarity into the Jacobians for the translator J A

T (q), rotor
J A

R(q), and dilator J A
D(q).

The analytic dilator Jacobian can be found as

J A
D(q) = −1

4
(P∞P̃∞)−1

〈
J∞P̃∞ + P∞J̃∞

〉
0
VD,

(82)
where P∞ is the projection of infinity from Equation (24)

P∞ = (X · e∞)X−1, (83)

and J∞ its Jacobian

J∞ = (e∞ ·J A
c)C

−1 + (e∞ · C)Ĵ A
c . (84)

The analytic rotor Jacobian can be found as

J A
R(q) =

∣∣∣RR̃
∣∣∣− 1

2 J R

− 1

2

∣∣∣RR̃
∣∣∣− 3

2

R(RJ̃ R +J RR̃),

(85)

where R is the rotor VR(q) before normalization according
to Equation (26) and J R the corresponding Jacobian

J R = e3 · J̄N − e3 ∧ J̄N , (86)

where J̄N is the normalized Jacobian of the plane normal
found in Equation (25)

J̄N =
∣∣∣NÑ

∣∣∣− 1
2 JN

− 1

2

∣∣∣NÑ
∣∣∣− 3

2

N(NJ̃N +JN Ñ),

(87)

Prepared using sagej.cls

Löw et al. 25

where
JN = J ∗

E − 1

2
(e0 ·J ∗

E)e∞, (88)

and
J E = J A

c (q) ∧ e∞. (89)

The analytic translator Jacobian can be found as

J A
T = −1

2
⟨Pc⟩−1

0 J P

−⟨Pc⟩−1
0 Pc(−e∞ · ⟨J P ⟩0) ∧ e∞,

(90)

where Pc is the center point and J P its Jacobian

J P = J A
c (q)e∞Xc(q) +Xc(q)e∞J A

c (q). (91)

Prepared using sagej.cls

	Introduction
	Related Work

	Mathematical Background
	Geometric Algebra
	Geometric Primitives
	Transformation Groups in CGA

	Robot Modeling using CGA
	Geometric Algebra for Optimal Control
	Geometric Nullspace for Impedance Control
	Cooperative Dual Task Space

	Method
	Cooperative Task Space Modeling
	Cooperative Geometric Primitives
	Similarity Transformations
	Point to Point
	Line to Line
	Plane to Plane
	Circle to Circle
	Sphere to Sphere

	Cooperative Task Space Kinematics
	Cooperative Task Space Dynamics
	Cooperative Similarity Control
	Inverse Kinematics
	Impedance Control
	Optimal Control
	Geometric Nullspace
	Manipulability Analysis

	Results
	Impedance Control
	Optimal Control Illustrations
	Line Reaching
	Circle Reaching
	Plane Reaching
	Sphere Reaching
	Line Constraint

	Geometric Nullspace
	Geometric Singularity
	Teleoperation Demonstration

	Discussion
	Connection to Traditional Single-Arm Control
	Geometric Nullspace
	Singularities of Cooperative Primitives
	Conditions for Well-Definedness
	Rank Deficiency and Jacobian Conditioning
	Practical Implications and Mitigation Strategies

	Extension to Arbitrary Contact Points on the Robot Body
	Extension to Human-Robot Collaboration
	Extension to n Kinematic Chains
	Different Types of Geometric Primitives
	Numerical Analysis
	Computational Efficiency
	Practical Considerations

	Conclusion
	Transformation Groups in CGA
	Rotation Group
	Translation Group
	Uniform Scaling Group
	Rigid Transformation Group
	Similarity Group

	Jacobians
	Normalizing a Multivector
	Inverting a Multivector
	Analytic Circle Similarity Jacobian

