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Tactile Ergodic Coverage on Curved Surfaces
Cem Bilaloglu∗, Tobias Löw∗, and Sylvain Calinon

Abstract—In this article, we present a feedback control method
for tactile coverage tasks, such as cleaning or surface inspection.
Although, these tasks are challenging to plan due to the com-
plexity of continuous physical interactions, the coverage target
and progress can be effectively measured using a camera and
encoded in a point cloud. We propose an ergodic coverage
method that operates directly on point clouds, guiding the robot
to spend more time on regions requiring more coverage. For
robot control and contact behavior, we use geometric algebra to
formulate a task-space impedance controller that tracks a line
while simultaneously exerting a desired force along that line. We
evaluate the performance of our method in kinematic simulations
and demonstrate its applicability in real-world experiments on
kitchenware. Our source codes, experiment videos, and data
are available as open access at https://sites.google.com/view/
tactile-ergodic-control/.

Index Terms—Tactile Robotics, Ergodic Coverage, Geometric
Algebra

I. INTRODUCTION

The long-term vision of robotics is to assist humans with
daily tasks. The success of robot vacuum cleaners and lawn-
mowers as consumer products highlights the potential of
robotic assistance for common household chores [1]. These
tasks involve covering a region in a repetitive and exhaus-
tive manner. Currently, these robots are limited to relatively
large, planar surfaces, and even navigating slopes remains
challenging [2], [3]. Other daily tasks, such as washing dishes
or grocery items, present even greater challenges due to the
complex physical interactions with intricate, curved surfaces.
Similarly, numerous coverage tasks on curved surfaces arise
in industrial and medical applications. In industrial settings,
such tasks include surface operations that remove material,
such as sanding [4], polishing [5], [6] or deburring [7] as
well as surface inspection tasks leveraging contact [8]. In
medical settings, similar applications range from mechanical
palpation [9], [10] and ultrasound imaging [11], [12] to
massage [13], [14] and bed bathing [15], [16]. Last but not
least, datasets combining the tactile properties of objects with
their shape and visual appearance remain scarce and expensive
to collect, as they rely on teleoperation [17]. Thus, tactile
coverage is critical for automating the collection of tactile
datasets that complement visual ones. The problem definitions
of this diverse range of settings and applications can be

This work was supported by the State Secretariat for Education, Research
and Innovation in Switzerland for participation in the European Commis-
sion’s Horizon Europe Program through the INTELLIMAN project (https:
//intelliman-project.eu/, HORIZON-CL4-Digital-Emerging Grant 101070136)
and the SESTOSENSO project (http://sestosenso.eu/, HORIZON-CL4-
Digital-Emerging Grant 101070310).

∗Equal contribution. The authors are with the Idiap Research Institute,
Martigny, Switzerland and with the Ecole Polytechnique Fédérale
de Lausanne (EPFL), Switzerland. cem.bilaloglu@idiap.ch;
tobias.loew@idiap.ch; sylvain.calinon@idiap.ch

Diffusion CoverageGradient field

Measure coverageUpdate target

Coverage Loop

Vision

Tactile Control

Force

Fig. 1: Overview of our feedback control method for tactile
coverage. Left: We measure the surface and the red target using
the camera and encode them in a point cloud. Bottom-right:
We diffuse the target and use its gradient field to guide the
coverage. Then, we close the loop by measuring the actual
coverage with the camera and use it as the next target. Top-
right: We measure the tactile interaction forces using the force
sensor and the tool orientation using the joint positions. We
solve the geometric task-space impedance control problem
using a line target and a force target along the line.

distilled into two key requirements: (i) tactile interactions with
a possibly non-planar surface and (ii) a continuous trajectory
of contact points covering a region of interest on the surface.
Accordingly, this article addresses the overarching problem of
tactile coverage on curved surfaces.

Tactile interaction tasks, by definition, involve multiple
contact interactions with the environment, making these sys-
tems notoriously difficult to control [18]. While humans solve
these tasks effortlessly, they remain extremely challenging
for robots. For instance, when cleaning an object, achieving
adequate coverage depends on recognizing dirt, understanding
the object’s material, and assessing their interaction to deter-
mine the required contact force for removal. Consequently,
the success of coverage depends on unknown or difficult-
to-measure parameters, making it challenging to model all
interactions. Without an accurate model, motion planning is
prone to failure. By analyzing previous research [19] and
observing how humans address these challenges, we argue
that humans bypass the complexities of planning by solving
the simpler closed-loop control problem. Humans leverage
visual and tactile feedback for online adaptation. Similarly,
robots can measure progress in tactile coverage tasks using
vision, turning the task of identifying uncovered regions into
an image segmentation problem. This problem has been ad-
dressed using various model-based [20], [21] or learning-based
algorithms [16], [22]. However, determining how to control a
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robot to cover these target regions on curved surfaces remains
an open challenge.

Existing research on coverage has primarily focused on
coverage path planning, which involves optimizing a path to
ensure that a specified region of interest is covered within
a set time frame. Traditionally, the underlying assumption
is that visiting each point in the region of interest only
once is sufficient for full coverage, an assumption that is
reasonable for simple interactions, but not for many tactile
tasks. Tactile interactions are often too complex to model
deterministically, making it challenging to ensure full coverage
after a single visit. Instead, for a cleaning task, a relatively
dirty region requires more visits compared to a less dirty
region. Similarly, in a surface inspection task, regions requir-
ing higher precision demand more visits to compensate for
sensor uncertainty. Furthermore, the robot is expected to keep
in contact with the surface while moving, which significantly
increases the cost of movement. This cost depends on the
geodesic distance on the surface rather than the Euclidean
distance. Therefore, naive sampling strategies that fail to
account for the cost or constraints of movement and/or surface
geometry are unsuitable for tactile coverage tasks. In contrast,
ergodic coverage [23] controls the trajectories of dynamical
systems by correlating the average time spent in a region
to the target spatial distribution. Therefore, ergodic coverage
incorporates the motion model as the system dynamics and
directly controls the coverage trajectories by using the spatial
distribution measured by the vision system.

Considering these challenges, we present a closed-loop
tactile ergodic control method that operates on point clouds for
tactile coverage tasks. Using point clouds enables us to acquire
the target object and spatial distribution at runtime using
vision, measure coverage progress, and compensate for un-
modeled dynamics in tactile coverage tasks. Our method then
constrains the ergodic control problem to arbitrary surfaces to
cover a target spatial distribution on the surface. We propagate
coverage information by solving the diffusion equation on
point clouds, which we compute in real-time by exploiting
the surface’s intrinsic basis functions called Laplacian eigen-
functions. These eigenfunctions generalize the Fourier series
to manifolds (i.e., curved spaces). In order to exert a desired
force on the surface while moving, we formulate a geometric
task-space impedance controller using geometric algebra. This
controller uses surface information to track a line target that
is orthogonal to the surface while simultaneously exerting
the desired force in the direction of that line. Notably, the
geometric formulation ensures that these two objectives do
not conflict with each other and can therefore be included in
the same control loop without requiring exhaustive parameter
tuning. In summary, our proposed closed-loop tactile ergodic
control method offers the following contributions:

• formulating the tactile coverage as closed-loop ergodic
control problem on curved surfaces

• closing the coverage loop by solving ergodic control
problem on point clouds using diffusion

• achieving real-time frequencies by computing the diffu-
sion using Laplacian eigenfunctions

• contact line and force tracking without conflicting objec-
tives

The rest of the article is organized as follows. Section II
describes related work. Section III provides the mathematical
background. Section IV presents our method. In Section V,
we demonstrate the effectiveness of our method in simulated
and real-world experiments. Finally, we discuss our results in
Section VI.

II. RELATED WORK

The majority of the coverage methods consider the problem
from a planning perspective and are generally known as
coverage path planning (CPP) algorithms [24]–[26]. Although
these methods can handle planar regions with various bound-
aries [27]–[29], their extension to curved surfaces imposes lim-
iting assumptions, such as projectively planar [30] or pseudo-
extruded surfaces [31]. Additionally, CPP methods assume
that the coverage target is uniformly distributed in space.
Extending CPP methods to account for spatial correlations in
the information leads to informative path planning (IPP) [32].
Most IPP and CPP approaches address a variant of the NP-hard
traveling salesman problem [33], which limits their scalability
as domain complexity increases. Consequently, existing meth-
ods are either open-loop [34] or impose limiting assumptions,
such as convexity, for online planning updates [32].

Closely related to coverage is the problem of exploration,
where the environment is initially unknown, and robots gather
information using onboard sensors [35], [36]. Tactile ex-
ploration is particularly necessary for gathering information
on surfaces that can only be acquired through contact [37].
A notable example is non-invasive probing (palpation) of
tissue stiffness, which aids in disease diagnosis or surgery by
providing additional anatomical information. For this purpose,
Gaussian processes (GP) have been used for discrete [38] and
continuous [39] probing to map tissue stiffness. While GP-
based approaches effectively guide sampling locations, they
do not account for the robot’s dynamics. This limitation was
later addressed by using trajectory optimization to actively
search for tissue abnormalities [40]. Unlike other sensing
modalities that depend solely on position, tactile interactions
also depend on conditions such as relative velocity and contact
pressure [41]. To address this, methods have been developed
to model forces [42] and more complex interactions between
robotic tools and surfaces [43].

The complexity of the problem increases further if we
consider scenarios with a robot physically interacting with the
environment. For example, in tasks like surface finishing (e.g.,
polishing, sanding, grinding), the surface itself changes, as ma-
terial is removed [44]. Similarly, in cleaning tasks, the robot’s
actions affect the distribution of dirt on the surface [45]. To
avoid complex modeling, there are approaches either relying
on reinforcement learning [46] or deep learning [47]. In a very
similar setting to ours, a manipulator was used to clean the
stains on a curved surface by performing multiple passes [20].
However, this work used a sampling-based planner, which
required to predefine the maximum number of cleaning passes.
In contrast, we relate the target distribution (e.g., stain) directly
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to feedback control through ergodicity without requiring any
task-specific assumptions.

In tactile coverage scenarios, visiting a region once can not
guarantee full coverage, and predicting how many times the
robot should revisit a particular spot is challenging. Conse-
quently, defining a time horizon for trajectory optimization is
difficult, as the quality of the result would be significantly
affected by this hard-to-make choice. Instead, ergodic control
relates how often the robot should revisit a particular spot
to the target density at that spot. In this context, ergodic
describes a dynamical system in which the time averages
of functions along its trajectories are equal to their spatial
averages [48]. The key advantage of ergodic control is its
ability to handle arbitrary spatial target distributions without
requiring a predefined time horizon. When the spatial target
distribution is measurable, the ergodic controller can use this
feedback to direct the system to visit regions with higher
spatial probabilities more frequently. Recent findings have
demonstrated that ergodicity is not merely a heuristic [49]; it is
the optimal method for collecting independent and identically
distributed data while accounting for system dynamics.

The concept of ergodic control was introduced in the
seminal work by Mathew and Mezić [23], which presented
the spectral multiscale coverage (SMC) algorithm. SMC is
a feedback control law based on the Fourier decomposition
of the target distribution and robot trajectories, where multi-
scale aspect prioritizes low-frequency components over high-
frequency ones, corresponding to starting with large-scale
spatial motions before refining finer details. Since this behavior
is achieved through a myopic feedback controller rather than
an offline planner, the ergodic controller remains effective
even when motion is obstructed [50]. Furthermore, various
works have adapted SMC’s objective within a trajectory opti-
mization framework to incorporate additional objectives, such
as obstacle avoidance [51], time-optimality [52] and energy-
awareness [53]. Ergodic control has been used for tactile cov-
erage and exploration in applications such as non-parametric
shape estimation [54] and table cleaning through learning from
demonstration [55]. However, all these formulations, which
rely on the Fourier decomposition-based ergodic metric, are
limited to rectangular domains in Euclidean space.

The first attempt to extend the ergodic control to Rie-
mannian manifolds [56] utilized Laplacian eigenfunctions,
which generalize the Fourier series to curved spaces. However,
this approach was restricted to homogeneous manifolds, such
as spheres and tori, where closed-form expressions for the
Laplacian eigenfunctions are available. More recently, the
kernel ergodic metric [57] was introduced as an alternative
to SMC’s ergodic metric, enabling extensions to Lie groups
and offering improved computational scalability. Nonetheless,
arbitrary curved surfaces collected using sensors, such as point
clouds, lack both the group structure and the homogeneous
manifold properties, presenting additional challenges.

Another alternative to SMC is the heat equation-driven
area coverage (HEDAC) algorithm [58], which uses the dif-
fusion equation, a second-order partial differential equation
(PDE), to propagate information about uncovered regions
to agents across the domain. Similar to SMC, the original

HEDAC implementation was restricted to rectangular domains
and lacked collision avoidance. Subsequent extensions have
adapted HEDAC to planar meshes with obstacles [59], maze
exploration [60], and CPP on non-planar meshes [61]. How-
ever, its application on curved surfaces remains limited to
meshes and offline planning due to the heavy pre-processing
required, which is both time and computation-intensive.

In addition to its use in HEDAC, the diffusion equation
is widely used in geometry processing tasks, ranging from
geodesic computation [62] to learning on surfaces [63]. Its key
advantage lies in its ability to account for surface geometry
while remaining agnostic to the underlying representation and
discretization [63]. The diffusion equation is governed by a
second-order differential operator called the Laplacian which
can be computed for arbitrary surfaces represented as meshes
or point clouds using various discretization schemes [64]–[66].
In this work, we use a recent approach proposed by Sharp et
al. which provides a robust and efficient implementation [67],
capable of handling partial and noisy point clouds.

III. BACKGROUND

A. Ergodic Control using Diffusion

The ergodic control objective correlates the time that a
coverage agent spends in a region to the probability density
specified in that region. The HEDAC method [58] encodes
the coverage objective in the domain x ∈ Ω at time t using a
virtual source term

s(x, t) = max (p(x)− c(x, t), 0)
2
, (1)

where p(x) is the probability distribution corresponding to the
coverage target and c(x, t) is the normalized coverage of the
N virtual coverage agents over the domain

c(x, t) =
c̃(x, t)∫

Ω
c̃(x, t)dx

. (2)

A single agent’s coverage is the convolution of its footprint
φ(r) with its trajectory xi(t

′). Then, the total coverage
becomes the time-averaged sum of these convolutions

c̃(x, t) =
1

Nt

N∑
i=1

∫ t

0

φ (x− xi(t
′)) dt′. (3)

HEDAC diffuses the source term across the domain Ω and
computes the potential field u(x, t) using the stationary
(u̇(x, t) = 0) diffusion (heat) equation

α∆u(x, t)− u(x, t) + s(x, t) = 0, (4)

with the diffusion coefficient α > 0 and the Laplacian oper-
ator ∆. The Laplacian is a second-order differential operator
which reduces to the sum of the second partial derivatives in
Euclidean spaces

∆f = ∇ · ∇f =

n∑
i=1

∂2f

∂x2
i

, ∀x ∈ Rn. (5)

The stationary diffusion equation (4) governs the potential field
within the interior of the domain Ω, while the behavior on
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the boundary ∂Ω is dictated by the zero-Neumann boundary
condition

n · ∇u(x, t) = 0, ∀x ∈ ∂Ω, (6)

where n represents the outward unit normal vector to the
boundary ∂Ω. To guide the i-th coverage agent, HEDAC
utilizes the smooth gradient field of the diffused potential
u(x, t) and simulates first-order dynamics

ẋi = ∇u(xi, t). (7)

B. Conformal Geometric Algebra

Here, we introduce conformal geometric algebra (CGA)
with a focus on the mathematical background necessary to
understand the methods used in this article. We will use the
following notation throughout the paper: x to denote scalars,
x for vectors, X for matrices, X for multivectors and X for
matrices of multivectors.

The inherent algebraic product of geometric algebra is
called the geometric product

ab = a · b+ a ∧ b, (8)

which (for vectors) is the sum of an inner · and an outer ∧
product. The inner product is the metric product and therefore
depends on the metric of the underlying vector space over
which the geometric algebra is built. The underlying vector
space of CGA is R4,1, which means there are four basis vectors
squaring to 1 and one to -1. The outer product, on the other
hand, is a spanning operation that effectively makes subspaces
of the vector space elements of computation. These subspaces
are called blades. In the case of CGA, there are 32 basis blades
of grades 0 to 5. The term grade refers to the number of basis
vectors in a blade that are factorizable under the outer product.
Vectors, consequently, are of grade 1 and the outer product of
two independent vectors, called bivectors, are of grade 2. A
general element of geometric algebra is called a multivector.

In practice, CGA actually applies a change of basis by
introducing the two null vectors e0 and e∞, which can be
thought of as a point at the origin and at infinity, respectively.
Since the Euclidean space is embedded in CGA, we can embed
Euclidean points x to conformal points P via the conformal
embedding

P = C(x) = e0 + x+
1

2
x2e∞. (9)

In general, geometric primitives in geometric algebra are
defined as nullspaces of either the inner or the outer product,
which are dual to each other. The outer product nullspace
(OPNS) is defined as

NOG(X) =
{
x ∈ R3 : C(x) ∧X = 0

}
. (10)

A similar expression can be found for the inner product
nullspace. The conformal points are the basic building blocks
to construct other geometric primitives in their OPNS repre-
sentation. The relevant primitives for this work are lines

L = P1 ∧ P2 ∧ e∞, (11)

which can be constructed from two points and a point at
infinity, planes

E = P1 ∧ P2 ∧ P3 ∧ e∞, (12)

which can be constructed from three points and a point at
infinity and spheres

S = P1 ∧ P2 ∧ P3 ∧ P4, (13)

which can be constructed from four points.
Rigid body transformations in CGA are achieved using

motors M , which are exponential mappings of dual lines, i.e.
bivectors (essentially, the screw axis of the motion). Note that
motors can be used to transform any object in the algebra,
i.e. they can directly be used to transform the previously
introduced points, lines, planes and spheres, by a sandwiching
operation

X ′ = MXM̃, (14)

where is M̃ is the reverse of a motor.
The forward kinematics of serial kinematic chains can be

found as the product of motors, i.e.

M(q) =

N∏
i=1

Mi(qi) =

N∏
i=1

exp(qiBi), (15)

where q is the current joint configuration and Bi are screw
axes of the joints. The geometric Jacobian J G(q) ∈ B1×N ⊂
G1×N

4,1 is a bivector valued multivector matrix and can be found
as

J G =
[
B′

1 . . . B′
N

]
, (16)

where the bivector elements can be found as

B′
i =

i∏
j=1

Mj(qj)Bi

i∏
j=1

M̃j(qj). (17)

Twists V and wrenches W are also part of the algebra and
hence both can be transformed in the same manner as the
geometric primitives using Equation (14). Note that, contrary
to classic matrix Lie algebra, no dual adjoint operation is
needed to transform wrenches. There is, however, still a
duality relationship between twists and wrenches, which can
be found via multiplication with the conjugate pseudoscalar
Ic = Ie0 [68]. Both twists and wrenches are bivectors and
the space of wrenches can be found as

W ∈ span{e23, e13, e12, e01, e02, e03}. (18)

The inner product of twists and wrenches V ·W = −p yields
a scalar, where p is the power of the motion. Similarly, the
inner product of a screw axis and a wrench B ·W = −τ yields
a torque τ , which we will use for the task-space impedance
control in this article.

IV. METHOD

We present our closed-loop tactile ergodic coverage method
in three parts: (i) surface preprocessing; (ii) tactile coverage;
and (iii) robot control. The surface preprocessing computes
the quantities that need to be calculated only once when the
surface is captured. Tactile coverage generates the motion
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commands for the virtual coverage agent using the precom-
puted quantities from the surface preprocessing and the robot
controller tracks the generated motion commands with a
manipulator using impedance control.

A. Problem Statement

We formulate a tactile ergodic controller that covers target
spatial distributions on arbitrary surfaces. Similar to HEDAC,
we propagate the information encoding the coverage objective
by solving the diffusion equation. However, we utilize the non-
stationary (u̇ ̸= 0) diffusion equation

u̇(x, τ) = ∆Mu(x, τ), (19)

as it allows control over the desired smoothness [69]. Since the
diffusion equation depends on time, we introduce an additional
time variable τ for diffusion. The diffusion time τ is indepen-
dent of the coverage time t used by the HEDAC algorithm and
unlike HEDAC, we require the initial condition u(x, 0). We set
the initial condition using the source term given in Equation
(1) which encodes the coverage objective at the t-th timestep
of the coverage, i.e., u(x, 0) = s(x, τ). Additionally, here we
use ∆M, which generalizes the Laplacian for Euclidean spaces
∆ to non-Euclidean manifolds M. This operator ∆M is also
known as Laplace-Beltrami operator but for conciseness we
will use the term Laplacian.

Our coverage domains are curved surfaces (i.e. 2-manifolds)
and we capture the underlying manifold M as a point cloud
P composed of nP points using an RGB-D camera

P :=

{
(xi, ci)

∣∣∣∣∣ xi ∈ R3, ci ∈ {0, . . . , 255}3

for i = 1, . . . , nP

}
, (20)

where xi is the position of the i-th surface point in Euclidean
space and ci is the vector of RGB color intensities. We assume
there is a processing pipeline (i.e., such as [20], [63], [70])
which maps the point positions and colors to the probability
mass pi of the spatial distribution encoding the coverage
objective. Accordingly, our coverage target becomes a discrete
spatial distribution p(xi) = pi on the point cloud P .

In order to solve (19) on irregular and discrete domains,
such as point clouds, we discretize the problem in space
and time. Hence, we use ui,τ to denote the value of the
potential field at the i-th point at the τ -th timestep. We omit
the subscript i if we refer to all points.

B. Surface Preprocessing

First, we compute the spatial discretization of the Laplacian
∆M. Note that there are various approaches for discretizing
the Laplacian on point clouds [64]–[67]. In this work, we
follow the approach presented in [67] and show a simplified
version of it here, but refer the readers to the original work
for more details. Using this method, the discrete Laplacian is
represented by the matrix L ∈ RnP×nP

L = M−1C, (21)

where M is the diagonal mass matrix and C is a sparse
symmetric matrix called the weak Laplacian. The entries of

M correspond to the Voronoi cell areas in the local tangent
plane around each point of P . Similarly, the entries of C
are determined by the connectivity of the points on the local
tangent space and the distance between the connected points.
Note that the local tangent space structure also identifies the
boundary points. For a given point, the lines between the
original point and its neighbors are constructed. If the angle
between two consecutive lines is greater than π/2, the point is
a boundary and its boundary condition is set as zero-Neumann.

Next, we discretize the diffusion equation (19) in time and
incorporate the discrete Laplacian L. Using the backward
Euler method, we derive the implicit time-stepping equation,
which remains stable for any timestep τ

1

τ
(uτ − u0) = Luτ , (22)

where u0 and uτ are column vectors containing the potential
field values at the vertices of the point cloud at the initial and
final times, respectively. Then, combining Equations (21) and
(22) and solving for uτ we obtain the linear system

uτ = (M − τ C)−1Mu0. (23)

Note that solving (23) requires inverting a large sparse matrix,
which might be computationally expensive depending on the
size of the point cloud and requires the timestep to be set
before the inversion. Alternatively, we can solve the problem
in the spectral domain by projecting the original problem
and reprojecting the solution back to the point cloud. This
procedure generalizes using the Fourier transform for solv-
ing the diffusion equation on a rectangular domain in Rn

to arbitrary manifolds. Note that the Fourier series are the
eigenfunctions of the Laplacian ∆ in Rn. Therefore we can
use the eigenvectors of the discrete Laplacian L for solving
the diffusion equation on point clouds.

We can write the generalized (i.e., M ̸= I) eigenvalue
problem for the Laplacian as

Cϕm = λmMϕm, (24)

where {λm,ϕm} are the eigenvalue/eigenvector pairs. Since
M is diagonal and C is symmetric positive definite, by the
spectral theorem, we know that the eigenvalues are real, non-
negative, and in ascending order analogous to the frequency.
Therefore, we can use the first nM eigenvalue/eigenvector
pairs as a low-frequency approximation of the whole spectrum.
Furthermore, the eigenvectors are orthonormal with respect to
the inner product defined by the mass matrix M . Accordingly,
we can stack the first nM eigenvectors ϕm as column vectors
to construct the matrix Φ ∈ RnP×nM encoding an orthonor-
mal transformation Φ⊤MΦ = I . Then, we can transform the
coordinates (shown with superscripts) from the point cloud to
the spectral domain

uϕ = Φ⊤Mux. (25)

Note that this step is equivalent to computing the Fourier
series coefficients of a target distribution in SMC. Due to
the orthonormal transformation, the PDE on the point cloud
becomes a system of decoupled ODEs in the spectral domain.
It is well known that the solution of a first-order linear ODE
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ẋ(τ) = −cx(τ) is given by x(τ) = e−cτx(0), where c is
a constant and x(0) is the initial condition. Therefore, the
solution of the system of ODEs in the spectral domain is given
in matrix form as

uϕ
τ =

[
e−λ1τ . . . e−λmτ

]⊤ ⊙ uϕ
0 , (26)

where ⊙ denotes the Hadamard product. We observe from (26)
that the exponential terms with larger eigenvalues (i.e., higher
frequencies) will decay faster. Therefore, approximating the
diffusion using the first nM components introduces minimal
error. Secondly, similar to the mixed norm used in SMC,
the low-frequency spatial features are prioritized. Next, we
transform the solution back to the point cloud to get the
diffused potential field

ux = Φuϕ. (27)

We can combine (25), (26) and (27) into a unified spectral
scheme

uτ = Φ
[
e−λ1τ . . . e−λmτ

]⊤ ⊙ (Φ⊤Mu0) . (28)

We omit the superscripts when working on the point cloud for
brevity. Note that τ is the only free parameter in the diffusion
computation. However, its value should be adapted according
to the mean spacing between the adjacent points h on the
point cloud. For that purpose, we introduce the hyperparameter
α > 0 and embed it into the timestep calculation

τ = αh2. (29)

Accordingly, we can control the diffusion behavior indepen-
dently of the point cloud size. Increasing α results in longer
diffusion times and attenuates the high-frequency spatial fea-
tures (see (26) for details). This corresponds to a more global
coverage [69]. Conversely, decreasing α results in shorter
diffusion times, which leads to preserving the high-frequency
spatial features, hence more local coverage behavior.

Note that the Laplacian is determined completely by the
connectivity on the local tangent space and the distance
between these connected points. Therefore, it is invariant to
distance preserving (i.e., isometric) transformations such as
rigid body motion or deformation without stretching. Accord-
ingly, we compute C, M and derived quantities only once
in the preprocessing step for a given surface. Recomputation
is not necessary if the object stays still, moves rigidly, or the
target distribution pi changes.

C. Tactile Ergodic Coverage
We model the actual coverage tool/sensor as a compliant

virtual coverage agent shaped as a disk with radius ra.
Notably, one can represent arbitrary tool/sensor footprints as
a combination of disks [69]. We position our agent at the end-
effector of our manipulator. Thus, for a given kinematic chain
and joint configuration q, we can use the forward kinematics
to compute the position of our agent as a conformal point Pa

Pa = M(q)e0M̃(q). (30)

Since the point cloud is discrete and the agent should move
continuously on the surface, we project our agent Pa and its
footprint to the closest local tangent space on the point cloud.

1) Local Tangent Space and Coverage Computation: Given
the agent’s position Pa, we first compute the closest tangent
space on the point cloud. For that, we query a K-D tree T (P)
for the points xi ∈ P that are within the radius ra of the
agent. Then, we compute the conformal embeddings Pi of the
neighboring Euclidean points xi using (9). We refer to the set
composed of points Pi as the local neighborhood. Then, we
fit a tangent space to the local neighborhood by minimizing
the classical least squares objective

min

nN∑
i=1

(Pi ·X∗)2, (31)

where X∗ is the dual representation of either a plane or
a sphere and the inner product · is a distance measure. In
CGA, planes can be seen as limit cases of spheres, i.e. planes
are spheres with infinite radius. This is also easy to observe
by looking at Equations (12) and (13) which construct these
geometric primitives. Note that fitting a local tangent sphere
with the radius determined by the local curvature would always
result in smaller or equal residuals than fitting a plane.

It has been shown in [71] that the solution to the least
squares problem given in (31) is the eigenvector corresponding
to the smallest eigenvalue of the 5× 5 matrix

bj,k =

nN∑
i=1

wi,jwi,k, (32)

where

wi,k =


pi,k if k ∈ {1, 2, 3}
−1 if k = 4

− 1
2p

2
i if k = 5.

(33)

Using the five components vi of this eigenvector we can find
the geometric primitive as

X = (v0e0 + v1e1 + v2e2 + v3e3 + v4e∞)
∗
. (34)

Note that if X is a plane then v0 = 0, otherwise X is a
sphere. Next, we want to project Pa to X by using the general
subspace projection formula of CGA

Ppair =
(
(Pa ∧ e∞) ·X

)
X−1. (35)

Here we first construct the pointpair Pa ∧ e∞, where e∞
corresponds to the point at infinity. Pa ∧ e∞ is also called a
flat point. Note that the projection essentially amounts to first
constructing the dual line (Pa ∧ e∞) ·X that passes through
the point Pa and is orthogonal to X , then intersecting this line
with the primitive X .

If X is a sphere, then the intersection of the line and the
sphere will result in two points on the sphere. If X is a plane,
it will result in another flat point, i.e. one point on the plane
and one at infinity. In any case, we can retrieve the closer one
to the agent position Pa using the split operation

P ′
a = split [Pp] . (36)

Here, P ′
a is the projected agent position on the tangent space

X . Next, we compute our agent’s footprint (i.e., instantaneous
coverage) by projecting its surface to the point cloud. If the
target surface was flat, all the points within the radius ra of
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our agent P ′
a would be covered by the footprint. However,

in the general case, both the tool and the surface can be
curved and deformable. For simplicity, we assume that the
surface is rigid and it deforms the tool with a constant bending
radius. We use the radius of the local tangent sphere that we
computed using CGA as an approximation for the bending
radius. Accordingly, we can quantify the error of the local
tangent space approximation for the i-th neighbor Pi by the
normalized residuals ei of the least squares computation (31).
We encode this approximation error into the footprint by
weighting the i-th neighbor by the Gaussian kernel φ(r) using
the normalized residuals ri = ei/max(e)

φ(ri) = exp
(
−ε2r2i

)
, (37)

where the hyperparameter ε > 0 controls the coverage falloff.
Next, we substitute the Gaussian kernel weighted footprint
into (3) to compute the coverage ct, which is then used to
calculate the virtual source term st via (1). As mentioned
earlier, this virtual source term serves as the initial condition
for the diffusion equation (19) at each iteration of the tactile
coverage loop, i.e., u0 = st.

2) Gradient of the Diffused Potential Field: We guide the
coverage agent using the gradient of the diffused potential field
as the acceleration command

P̈ ′
a = ∇uP ′

a,τ
, (38)

where ∇uP ′
a,τ

denotes the gradient of the diffused potential
field at the projected agent position P ′

a. However, computing
the gradient on the point cloud is more involved than a
regular grid or a mesh. Recall that in Section IV-C1, we
already computed the projected agent position P ′

a, the local
neighborhood and the tangent space X∗. As the first step, we
compute the tangent plane Ea,τ at P ′

a, namely

Ea,τ = L∗
a,⊥ ∧ P ′

a ∧ e∞, (39)

using the line La,⊥, which is orthogonal to the surface and
passes through P ′

a. It is found by wedging the dual primitive
X with P ′

a to infinity with

La,⊥ = X∗ ∧ P ′
a ∧ e∞. (40)

Then, we project the points Pi in the local neighborhood to
the tangent plane Ea,τ using (35) and (36), by setting Ea,τ as
the primitive X . Next, we use the values of the potential field
at the neighbor locations as the height hi = ui,τ of a second
surface from the tangent plane. Then, we fit a 3-rd degree
polynomial to this surface as shown by using the weighted
least squares objective

Â = argmin
A

tr ((Y −XA)⊤W (Y −XA)) , (41)

with the diagonal weight matrix W

W = diag (φ(r1), φ(r1), . . . φ(rm)) , (42)

whose entries are given by the Gaussian kernel (37). One can
refer to [72] for the details. Lastly, we calculate the gradient at
the projected agent’s position using the analytical gradients of
the polynomial. We depict the approach visually in Figure 2.

Fig. 2: Blue-red points show the value of the potential field uτ

on the pointcloud P and the yellow point is the projected agent
position P ′

a. We also project the agent’s neighbors Pi to the
tangent plane Ea,τ , shown in green. Next, we use the height
function hi = ui,τ which uses the values of the potential
field to lift the projected points in the normal direction of the
tangent plane. We show the lifted points with large blue-red
points. We fit a polynomial to this lifted surface and compute
its analytical gradients at the neighbor locations ∇ui,τ , as
shown with arrows in the detail view.

D. Robot Control
There are several aspects that the control of the physical

robot needs to achieve. The first is to track the virtual coverage
agent on the target surface, while keeping the end-effector nor-
mal to the surface. The second is to exert a desired force on the
surface. To do so, we design a task-space impedance controller
while further exploiting geometric algebra for efficiency and
compactness. The control law is of the following form

τ = −J ⊤ · W, (43)

where J ∈ B1×N ⊂ G1×N
4,1 is the Jacobian multivector

matrix with elements corresponding to bivectors, W is the
desired task-space wrench and τ are the resulting joint torques.
Before composing the final control law, we will explain its
components individually.

1) Surface Orientation: From Equation (40), we obtained
a line La,⊥ that is orthogonal to the surface that we wish to
track. In [73], it was shown how the motor between conformal
objects can be obtained. We use this formulation to find the
motor between the target orthogonal line and the line that
corresponds to the z-axis of the end-effector of the robot in
its current configuration, which is found as

Lee = M(q)(e0 ∧ e3 ∧ e∞)M̃(q). (44)

Then, the motor MLeeLa,⊥ , which transforms Lee into La,⊥
can be found as

MLeeLa,⊥ =
1

C
(1 + La,⊥Lee) , (45)

where C is a normalization constant. Note that C does not
simply correspond to the norm of 1 + La,⊥Lee, but requires
a more involved computation. We therefore omit its exact
computation here for brevity and refer readers to [73].

We can now use the motor MLeeLa,⊥ in order to find a
control command for the robot via the logarithmic map of
motors, i.e.

VLa,⊥ = log
(
MLeeLa,⊥

)
. (46)
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Of course, if the lines are equal, MLeeLa,⊥ = 1 and conse-
quently VLa,⊥ = 0. Note that VLa,⊥ is still a command in task
space (we will explain how to transform it to a joint torque
command once we have derived all the necessary components).

Another issue is that algebraically, VLa,⊥ corresponds to
a twist, not a wrench. Hence, we need to transform it
accordingly. From physics, we know that twists transform
to wrenches via an inertial map, which we could use here
as well. In the context of control, this inertia tensor is,
however, a tuning parameter and does not actually correspond
to a physical quantity. Thus, in order to simplify the final
expression, we will use a scalar matrix valued inertia, instead
of a geometric algebra inertia tensor and choose to transform
the twist command to wrench command purely algebraically.
As it has been shown before, this can be achieved by the
conjugate pseudoscalar Ic = Ie0 [68]. It follows that

WLa,⊥ = VLa,⊥Ic, (47)

and WLa,⊥ now algebraically corresponds to a wrench.
2) Target Surface Force: Since this article describes a

method for tactile surface coverage, the goal of the robot
control is to not simply stay in contact with the surface, but
to actively exert a desired force on the surface. First of all, we
denote the current measured wrench as Wm(t) and the desired
wrench as Wd. Both are bivectors as defined by Equation (18).
We use Wd w.r.t. end-effector in order to make it more intuitive
to define. Hence, we need to transform Wm(t) to the same
coordinate frame, i.e.

W ′
m(t) = M̃(q)Wm(t)M(q). (48)

In order to achieve the desired interaction force, we simply
apply a standard PID controller in wrench space, i.e.

WC = Kp,WWe +Ki,W

∫ ⊤

0

We(τ)dτ +Kd,W
d
dt
We(t),

(49)
where the wrench error is

We(t) = Wd −W ′
m(t), (50)

where Kp,W ,Ki,W and Kd,W are the corresponding gain
matrices, and WC is the resulting control wrench.

Since the desired wrench is defined in end-effector coordi-
nates, it usually amounts to a linear force in the z-direction of
the end-effector frame, i.e. Wd = fde03. Additionally, for an
improved cleaning behavior one could also set a desired torque
around that axis by adding τde12. The pattern of how to set
this torque, however, would be subject to further investigation.

3) Task-Space Impedance Control: Recalling the control
law from Equation (43), we now collect the terms from the
previous subsections into a unified task-space impedance con-
trol law. We start by looking in more detail at the Jacobian J .
Previously, we mentioned that we are using the current end-
effector motor as the reference, hence, we require the Jacobian
to be computed w.r.t. that reference. This is therefore not the
geometric Jacobian that was presented in Equation (16), but
a variation of it. The end-effector frame geometric Jacobian
J ee

G can be found as

J ee
G =

[
Bee

1 . . . Bee
N

]
, (51)

where the bivector elements can be found as

Bee
i = M̃ee

i (q)BiM
ee
i , (52)

with

Mee
i =

i∏
j=N

Mi(qi). (53)

Hence, the relationship between J G and J ee
G can be found

as
J ee

G = M̃(q)J GM(q). (54)

The wrench in the control law is composed of the three
wrenches that we defined in the previous subsections. As
commonly done, we add a damping term that corresponds to
the current end-effector twist and as before, we transform it
to an algebraic wrench, i.e.

WV = J ee
G q̇e0∞. (55)

With this, we now have everything in place to compose our
final control law as

τ = −J ee,⊤
G ·

(
KLa,⊥WLa,⊥ −DVWV +WC

)
, (56)

where KLa,⊥ is a stiffness and DV a damping gain.

V. EXPERIMENTS
Our experimental setup comprises a BotaSys SensOne 6-

axis force torque (F/T) sensor attached to the wrist of a 7-axis
Franka Emika robot manipulator and a custom 3-D printed
part attached to the F/T sensor. The custom part interfaces
an Intel Realsense D415 depth camera and a sponge at its
tip. We consider the sponge’s center point to be the coverage
agent’s position Pa. Before the operation, we perform extrinsic
calibration of the camera to combine the depth and RGB feeds
from the camera and to obtain its transformation with respect
to the robot joints. Additionally, we calibrate the F/T sensor
to compensate for the weight of the 3-D printed part and
the camera. We show the experimental setup on the left of
Figure 1.

A. Implementation Details

The pipeline of our tactile ergodic coverage method consists
of three modules: (i) surface acquisition, (ii) surface coverage
and (iii) robot control. Figure 3 summarizes the information
flow between the components.

1) Surface Acquisition: The surface acquisition node is
responsible for collecting the point cloud and performing
preprocessing operations described in Section IV-B. We use
scipy1 for the nearest neighbor queries and for solving the
eigenproblem in (24). The matrices C and M composing
the discrete Laplacian in (21) are computed with the ro-
bust_laplacian package2 [67].

2) Surface Coverage: The surface coverage node per-
forms the computations based on the procedure given in
Section IV-C. It uses the information provided by the surface
acquisition node and produces the target line for the robot
control node.

1https://scipy.org
2https://github.com/nmwsharp/robust-laplacians-py

https://scipy.org
https://github.com/nmwsharp/robust-laplacians-py
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Surface Acquisition Surface Coverage Robot Control

Inner loop

Outer loop

Target, K-D Tree, Laplacian eigenbasis

Actual coverage

Line object

Actual agent position

Force target 

Fig. 3: Information flow between the three components. The pipeline is composed of an outer loop responsible for controlling
the coverage progress with the feedback from the camera, whereas the inner loop compensates for the mismatch due to the
robot dynamics.

3) Robot control: On a high level, the robot control can
be seen as a state machine with three discrete states. The
first two states are essentially two pre-recorded joint positions
in which the robot is waiting for other parts of the pipeline
to be completed. One of these positions corresponds to the
picture-taking position, i.e., a joint position where the camera
has the full object in its frame and the point cloud can be
obtained. The robot is waiting in this position until the point
cloud has been obtained, afterwards it changes its position
to hover shortly over the object. In this second position, it is
waiting for the computation of the Laplacian eigenfunctions to
be completed, such that the coverage can start. The switching
between those two positions is achieved using a simple joint
impedance controller.

The third, and most important, state is when robot is
actually controlled to be in contact with the surface and
to follow the target corresponding to the coverage agent.
This behaviour is achieved using the controller that we
described in Section IV-D. The relevant parameters, that
were chosen empirically for the real-world experiments, are
the stiffness and damping of the line tracking controller,
i.e. KLa,⊥ = diag(30, 30, 30, 750, 750, 300) and DV =
diag(10, 10, 10, 150, 150, 50), as well as the gains of the
wrench PID controller, i.e. Kp,W = 0.5, Ki,W = 5 and
Kd,W = 0.5. The controller has been implemented using our
open-source geometric algebra for robotics library gafro3 that
we first presented in [74]. Note that in some cases, matrix-
vector products of geometric algebra quantities have been used
for the implementation, where the mathematical structure of
the geometric product actually simplifies to this, which can be
exploited for more efficient computation.

B. Simulated Experiments

1) Computation Performance: In order to assess the com-
putational performance, we investigated the two main opera-
tions of our method: (i) preprocessing by solving either the
eigenproblem (24) or matrix inversion in (23) (ii) integrating
the diffusion at runtime using either the spectral (28) or
implicit (23) formulations. In this experiment, we used the
Stanford Bunny as the reference point cloud and performed
voxel filtering to set the point cloud resolution. We present the

3https://gitlab.com/gafro

results for the preprocessing in Figure 4 and for the runtime
in Figure 5.
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Fig. 4: Computational complexity of the preprocessing step
for different nP and nM . Legend shows nM values. The time
axis is logarithmic and the legend shows nM values.
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Fig. 5: Computational complexity of integrating the diffusion
equation at runtime for different nP and nM . The time axis
is logarithmic and the legend shows nM values.

2) Coverage Performance: We tested the coverage perfor-
mance in a series of kinematic simulations. As the coverage
metric, we used the normalized ergodicity over the target
distribution, which compares the time-averaged statistics of
agent trajectories to the target distribution

εt =
∥max (p− ct, 0) ∥2∑nP

i=1 pi
. (57)

https://gitlab.com/gafro
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We ran the experiments for three different objects: a partial
point cloud of the Stanford Bunny and two point clouds
of a cup and a plate and their target distributions that we
collected using the RGB-D camera. For the Stanford bunny,
we projected an ‘X’ shape as the target distribution. For
each object, we sampled ten different initial positions for the
coverage agent and kinematically simulated the coverage using
different numbers of eigencomponents nM = 25, 50, 100, 200
and diffusion timestep scalar α = 1, 5, 10, 50, 100. Since the
plate is larger compared to the Bunny and the cup, we used a
larger agent radius ra = 15 [mm] for the plate and a smaller
value ra = 7.5 [mm] for the cup and the Bunny. The other
parameters that we kept constant in all of the experiments are
ẍmax = 3 [mm/s2], ẋmax = 3 [mm/s]. We selected six repre-
sentative experiment runs to show the coverage performance
qualitatively, and present them in Figure 6.

We show the quantitative results with respect to nM and α in
Figures 7 and 8, respectively. Note that, in order to better show
performance trend in these plots, we have excluded parameter
combinations leading to failure cases. We will discuss those
in Section VI.

As the last experiment, we chose the best-performing pair
(nM , α) and show the time evolution of the coverage perfor-
mance for different objects in Figure 9.

C. Real-world Experiment
In the real-world experiments, we tested the whole pipeline

presented in Section V-A. We used three different kitchen uten-
sils (plate, bowl, and cup) with different target distributions
(shapes, RLI, X). For these experiments, we fixed the objects
to the table so that they could not move when the robot was in
contact. At the beginning of the experiments, we moved the
robot to a predefined joint configuration that fully captured
the target distribution. Since we collected the point cloud data
from a single image frame, our method only had access to a
partial and noisy point cloud. We summarize the results of the
real-world experiments in Figure 10 and share all the recorded
experiment data and the videos on the accompanying website.

D. Comparisons
We present the first tactile ergodic coverage method in the

literature that works on curved surfaces. Therefore, there are
no methods that we can directly compare to quantitatively.
For this reason, we selected three related state-of-the-art
methods and compared them to our method qualitatively. As
the first method, we selected the finite element based HEDAC
planner [61], since it is the only other ergodic control approach
working on curved surfaces. For the tactile interaction aspect,
we selected two methods, the unified force-impedance con-
trol [75] and the sampling-based informative path planner [20].
We specified six criteria for comparison and summarized the
results in Table I.

VI. DISCUSSION
A. Computational Performance

We investigated the computational performance of our
method for the preprocessing and for the runtime.

The preprocessing step is only required, when the robot sees
an object for the first time or when the object undergoes a non-
isometric transformation. First thing to note from Figure 4
is that computing the eigenbasis is significantly faster than
inverting the large sparse matrix. Secondly, the advantage
of the spectral approach becomes more significant as the
number of points increases. This is because the computational
complexity of the spectral approach is linear O(nPnM ) with
the number of points, whereas the matrix inversion of the
implicit solution has quadratic complexity O(n2

P).
If we compare our method with the state-of-the-art in

ergodic coverage on curved surfaces [61], our preprocessing
step is significantly faster. They reported a computation time of
19.7 s for a mesh with 2315 points using a finite-element-based
method. In contrast, our method takes 278ms for a point cloud
with ≈ 3000 points with nM = 100. Therefore, in comparison,
our method promises an increase in computation speed of more
than 90 times. Note that, as the number of points increases,
our gains in computation time become even more significant
due to the difference in the computational complexity of the
spectral and implicit formulations as mentioned above.

As Figure 5 shows the spectral approach also results in
a significant performance increase at runtime. The implicit
solution is also efficient in runtime, since it reduces to matrix-
vector multiplication after inverting the sparse matrix at the
preprocessing step. Nevertheless, the spectral formulation is
still significantly faster than the implicit formulation, espe-
cially for large point clouds.

Obviously, an unnecessarily large eigenbasis for small point
clouds, i.e. nM → nP , would cause the spectral approach to
be slower than the implicit one.

B. Coverage Performance

A close investigation of the failure scenarios in Figure 6
revealed that they stem from the bad coupling of the parame-
ters and from an initialization of the agent far away from the
source. If the agent is not far away from the source, setting low
values for α might actually lead to desirable properties such as
prioritizing local coverage which would in turn minimize the
distance traveled during coverage. Hence, for getting the best
behavior, α can be set adaptively or sequentially. For instance,
it is better to use high α values at the start for robustness to
bad initializations and to decrease it as the coverage advances
to prioritize local coverage and to increase the performance.

We measured the effect of our method parameters on the
coverage performance in Figures 7 and 8. Interestingly, the
parameters influencing the agent’s speed, i.e. ẋmax, nM and
α, have a coupled effect on the coverage performance in some
of the scenarios. The first thing to note here is that the value
of the α is lower-bounded by the speed of the coverage agent
ẋmax. Otherwise the method cannot guide the agent since it
moves faster than the diffusion. For instance, we observe from
Figure 6 a) and f) that with a diffusion coefficient α = 1, the
source information does not propagate fast enough to the agent
if it is too far from the source. Even for a small eigenbasis
nM ≤ 50 and moderate diffusion coefficient values 1 < α ≤
10, it still results in a low coverage performance εt > 0.5.
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(b)(a) (c) (d) (e) (f)

Fig. 6: Qualitative results of the coverage experiments showcasing the effect of different parameters. The red points designate
the spatial target distribution pi > 0. The agent starts at the green point, the trajectory is shown in black, and the final position
after 1000 timesteps is shown with the purple point. The tuples given on top of the figures show the parameters nK, α, and
ra of the experiments. We provide the interactive point clouds and the experiment data on our website.

TABLE I: Comparison of the proposed method with state-of-the-art methods.

Method Domain Approach Online Purpose Multiscale Multisetup a

Finite element-based HEDAC [61] Mesh Planning No Visual Inspection Yes No
Sampling-based Planner [20] Mesh Planning Yes Tactile Coverage No Yes
Unified Force-Impedance Control [75] None Control Yes Surface Exploration No No
Tactile Ergodic Control (Ours) Point Cloud b Control Yes Tactile Coverage Yes No

aMultisetup used by [20] refers to planning the configuration of the target object to reach otherwise unreachable regions.
bSince point clouds are the most general representation, our methoud can seamlessly be used on grids/meshes with only minor

changes to the computation of the discrete Laplacian.
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Fig. 7: Coverage performance measured by the ergodic metric
εt (57) with respect to nM used in the spectral formulation
(26).

On the contrary, if the eigenbasis is chosen to be sufficiently
large nM ≥ 100, we have more freedom in choosing α.

With this in mind, we removed the infeasible parameter
combinations (nM = 50, α = {5, 10}) from the experiment
results in Figures 7 and 8 to better observe the performance
trend for nM and α. It is easy to see that increasing nM results
in increased performance and higher freedom in choosing α.
However, this benefit becomes marginal after nM ≥ 100.
Therefore, choosing nM = 100 becomes a good trade-off
between coverage performance and computational complexity.
This observation is in line with the value of nM = 128
reported in [63].

In Figure 8, however, we observed minor differences in
performance for different α. Considering the spread and the
mean, choosing α = 10 would be a good fit for most
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Fig. 8: Coverage performance measured by the normalized
ergodic metric εt (57) with respect to the parameter α.

scenarios. Nevertheless, we must admit that the ergodic metric
falls short in distinguishing the most significant differences
between α values. Hence, the qualitative performance shown
in Figure 6 becomes much more explanatory. The first thing
to note here is that the lower values of α result in more local
coverage, whereas higher values lead to prioritizing global
coverage. Accordingly, the tuning of this parameter depends
on the task itself. For example, suppose the goal is to collect
measurements from different modes of a target distribution as
quickly as possible, in which case we would recommend using
α > 50. On the other hand, if the surface motion is costly,
because for example, the surface is prone to damage, moving
less frequently between the modes can be achieved by setting
5 < α < 50.

In scenarios where the physical interactions are complex,
stopping the coverage prematurely and observing the actual
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Fig. 9: Time evolution of the ergodic metric (57) for three
different objects with nM = 200 and α = 10. The semi-
transparent lines show ten different experiment runs, the center
line shows the mean, and the shaded regions correspond to the
standard deviation.

Fig. 10: Real-world experiment of the robot cleaning a plate, a
bowl, and a cup. For the first three columns we give snapshots
from the initial, intermediate, and final states from top to the
bottom. In the last column, we show the target distribution p,
the simulated potential field ut and the coverage ct from top
to the bottom.

coverage might be preferable instead of continuing the cov-
erage. To decide when to actually pause and measure the
current coverage, we investigated the time evolution of the
coverage performance in Figure 9. For the cup and the bunny,
we see that the coverage reaches a steady state around the
200-th timestep, while for the plate, this occurs around the
500-th timestep. Still, we can identify the steepest increase in
the coverage occurring until the 150-th timestep. Accordingly,
we recommend the strategy to pause the coverage at roughly
200 timesteps, measure the actual coverage, and continue the
coverage. This would potentially help in the cases where we
have unconnected regions (various modes), because discontin-
uous jumps between the disjoint regions might be quicker and
easier than following the surface. All that said, these claims
require further testing and experimentation, which are left to
be investigated in future work.

C. Force Control

We demonstrated that the proposed method can perform
closed-loop tactile ergodic control in the real world with
unknown objects and target distributions, as depicted in Fig-
ure 10. The primary challenge, however, is to be keeping
in contact with the surface without applying excessive force.
This is mainly due to the insufficient depth accuracy of the
camera, and uncertain dimensions of the mechanical system. A
suboptimal solution is to use a compliant controller and adjust
the penetration depth of the impedance target. A too compliant
controller would, however, reduce the tracking precision and
the uncertainty in the penetration depth could lead to unneces-
sarily high contact forces that might damage the object. More
importantly, high contact forces result in high friction that
further reduces the reference tracking performance.

Our solution to this problem was to introduce tactile feed-
back from the wrist-mounted force and torque sensor and
closed-loop tracking of a reference contact force. In general,
the commands generated by the force controllers conflict with
the position controllers and result in competing objectives. We
overcome this problem by posing the objective as line tracking
instead of position tracking. This forces the agent to be on the
line but free to move along the line. Accordingly, the force
and the line controller can simultaneously be active without
conflicting objectives or rigorous parameter tuning.

D. Comparisons

We compared our method with state-of-the-art approaches
in Table I. Since the methods are not comparable in all aspects,
we discuss the advantages and disadvantages of our method in
three parts: (i) ergodic coverage; (ii) tactile interactions; and
(iii) tactile coverage.

1) Ergodic Coverage: In the literature, the only other
ergodic coverage method on curved surfaces is the finite
element-based HEDAC [61]. This work presents an offline
planning method on meshes for visual inspection using multi-
ple aerial vehicles. Accordingly, our method extends the state
of the art in ergodic coverage on curved surfaces by being the
first formulation (i) working on point clouds, (ii) providing
closed-loop coverage using vision, and (iii) performing tactile
coverage. Furthermore, as we showed in the experiments
in Section V-B1, our approach vastly outscales the finite
element-based HEDAC in terms of computation time for the
preprocessing step. It is also important to note that, due to the
generality of the underlying ergodic control formulation that
we are using, our method could be applied to their use-case
as well.

2) Tactile Interactions: To ensure contact during tactile
exploration, the usage of a unified force-impedance control
scheme was proposed [75]. The general idea is similar to ours,
in the sense that the controller is required to track a given refer-
ence while exerting a force on the surface. The main difference
stems from the formulation of the reference for the impedance
behavior. While their method tracks a full Cartesian pose, our
impedance controller tracks a line. The main difference here
is that our method imposes less constraints on the reference
tracking, which leaves more degrees of freedom for secondary
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tasks, such as tracking the force objective. Hence, we require
no additional tuning to integrate these objectives, whereas their
method uses a passivity-based design to ensure the stability of
the combined controller.

3) Tactile Coverage: Concerning the problem of using
a manipulator for tactile coverage on curved surfaces, we
compare our method to the online sampling-based planner
presented in [20]. Unlike the more general point cloud repre-
sentation that we are using, this method operates on meshes.
However, it includes the planning of the configuration of the
target object. This is currently a limitation of our approach,
since we assume the object to be fixed and consider only
a single viewpoint. Although this configuration planner is
considered to be independent of the coverage at a given
configuration, it could be easily combined with our method. In
contrast to our myopic feedback controller, they use trajectory
planning, which requires a predefined planning horizon using
a number of passes for covering discrete patches. For tactile
coverage tasks, this can be extremely challenging to estimate
beforehand. Our method does not suffer from this limitation,
since ergodicity guarantees revisiting continuous areas accord-
ing to the target distribution over an infinite time horizon. In
addition, their approach is based on generating splines that
connect the waypoints. This has two issues: if the points are
not densely sampled, there is no guarantee that the resulting
spline would be on the surface; and conversely, if the points
are densely sampled, then the spline would be very complex
and not smooth. Accordingly, this approach would not scale to
complex surfaces and target distributions. Our approach, on the
other hand, uses a feedback controller to stay in contact with
the surface, where the local references are coming from the
surface-constrained ergodic controller. Hence, our approach is
mainly limited by the robot’s geometry with respect to the
complexity of the object, which could also be mitigated by
changing its configuration online.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the first closed-loop ergodic
coverage method on point clouds to address the tactile cov-
erage tasks on curved surfaces. Tactile coverage tasks are
challenging to model due to complex physical interactions.
We use vision to jointly capture the surface geometry and
the target distribution as a point cloud and directly use this
representation as input. Then, we propagate the information
regarding the coverage target to our robot using a diffusion
process on the point cloud. Here, we use ergodicity to relate
the spatial distribution to the number of visits required for
coverage in an infinite-horizon formulation. We leverage a
spectral formulation to trade-off the accuracy of the diffusion
computation with its computational complexity. To find a
favorable compromise between the two, we tested the depen-
dency of the coverage performance to the hyperparameters in
kinematic simulation experiments. Next, we demonstrated the
method in a real-world setting by cleaning previously unknown
curved surfaces with arbitrary human-drawn distributions. We
observed that our method can indeed adapt and generalize to
different object shapes and distributions on the fly.

Our method assumes that it is possbile to
Additionally, in some tactile coverage scenarios it is not

straightforward to measure the actual coverage using an RGB-
D camera such as surface inspection, sanding, or mechanical
palpation. Still, we can use cleaning as a proxy task such that
a human expert can mark the regions that need to be inspected
with an easy-to-remove marker. Then, the robot’s progress
would be detectable by a camera. Accordingly, our method
provides an interesting human-robot interaction modality using
annotations and markings of an expert for tactile robotics tasks.

As discussed in Section VI-D3, a practical limitation of our
setup is fixing the object pose during the operation. Therefore,
we plan to extend our method to scenarios where the object is
grasped by a second manipulator and can be reconfigured for
covering regions that otherwise would be unreachable due to
either collisions or joint limits. Although this problem is easy
to address by sampling discrete configurations, as previously
done in [20], our goal is to extend our method to handle this
problem in a continuous manner using a control approach.

Another promising extension of our method is automating
the collection of visuotactile datasets. In this setting, one
can combine our method with a vision-based active learning
module such as [41], which estimate high tactile-information
regions on the surface. Then, our controller could be used
to collect data from these regions with a multi-modal tactile
sensor.
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