
Recursive Forward Dynamics for Serial Kinematic
Chains using Conformal Geometric Algebra

Tobias Löw1,2[0000−0003−4001−2770] and Sylvain Calinon1,2[0000−0002−9036−6799]

1 Idiap Research Institute, Martigny Switzerland.
{tobias.loew, sylvain.calinon}@idiap.ch

2 EPFL, Lausanne, Switzerland

Abstract. The computation of the forward dynamics plays an impor-
tant role in simulating the motion of interconnected rigid bodies while
considering the physical properties and constraints of each part. The ap-
plications in robotics, graphics and animation usually require fast com-
putation, which leads to the usage of fast recursive algorithms. In this pa-
per, we present a formulation of the recursive forward dynamics of serial
kinematic chains that is rooted in geometry, which allows coordinate-
free view and geometrically meaningful interpretations of the involved
quantities. The mathematical framework is called conformal geometric
algebra (CGA) and it extends classical vector algebra by introducting a
unified representation of a large array of geometric operations, transfor-
mations and mathematical objects, such as points, lines, and planes, in a
rigorous yet intuitive manner. We validate the computation numerically
and provide an implementation of the results in an open-source library,
making it immediately available in practice.

Keywords: Geometric Algebra, Dynamics

1 Introduction

Simulation is an integral tool for robotic engineering since it allows for the safe
testing and evaluation of algorithms. Simulating the motion of robots from forces
using their dynamics is utilized in many different fields in robotics and it is an
important part in the development of new algorithms for robotics. The problem
of mapping forces to motion is solved by computing the forward dynamics of
the robot, i.e. mapping the applied joint torques to joint accelerations for a
given joint position and velocity. Consequently, there are many off-the-shelf robot
dynamics simulators available, such as Raisim [1], Isaac Sim [2], Gazebo [3],

This work was supported by the State Secretariat for Education, Research and Inno-
vation in Switzerland for participation in the European Commission’s Horizon Eu-
rope Program through the INTELLIMAN project (https://intelliman-project.eu/,
HORIZON-CL4-Digital-Emerging Grant 101070136) and the SESTOSENSO project
(http://sestosenso.eu/, HORIZON-CL4-Digital-Emerging Grant 101070310).

2 Tobias Löw and Sylvain Calinon

Mujoco [4], Bullet [5] or Coppelia Sim [6]. Furthermore, there are several software
libraries that, while not being full simulation engines, allow for the efficient
computation of the robot dynamics, e.g. Pinocchio [7], KDL [8] and RBDL [9].

There are many applications where the forward simulation of robotic systems
has become an integral part of algorithm. Often these forward simulations are run
in parallel to obtain trajectory rollouts, which requires very efficient algorithms
for the forward dynamics, such as in optimal control [10, 11] . Sampling-based
model predictive control, that is built upon gradient-free optimizers such as
model predictive path integral control [12], also heavily leverages parallel rollouts
provided by simulators [13]. Rolling out the system dynamics is also necessary for
dynamic programming approaches, including model predictive control [14], [15].
The same applies to motion planning where the dynamics are simulated forward
in time to determine the effects of the planned control command [16]. Apart
from robotics, the forward dynamics also play an important role in physics-based
animation where they are used for high-quality character animations [17].

Another aspect when developing robotic algorithms, apart from the model-
ing of the robot itself, is the modeling of the tasks and the environment. Here,
an increased focus has been put on exploiting the underlying geometry of the
problems. The different approaches include powerful mathematical techniques
such as Riemannian manifolds and Lie groups. They have been used especially
at the intersection of learning and control. Various works presented approaches
for representing robot skills using Riemannian manifolds and it was shown that
different manifolds can be used for that purpose [18]. The manifold can be pre-
defined, such as learning orientations [19], and leveraged in a dictionary of dif-
ferent manifolds [20]. In [21], the authors presented a framework for geometry
aware manipulability learning, and then tracking the learned trajectory of ma-
nipulability ellipsoids and transferring it to different systems. These works used
the manifold of symmetric positive-definite matrices for the skill representation.
The underlying Riemannian manifold can, however, also be learned to obtain
motion skills and then later be used for reactive motion generation [22]. Rie-
mannian motion policies are another geometric framework for reactive control
[23]. In addition to these geometric learning and control methods, Riemannian
optimization is also used to exploit geometric structures for solving the inverse
kinematics problem based on distance geometry [24].

Apart from these geometric techniques, a mathematical framework called
geometric algebra is also gaining traction in robotics research. In engineering,
geometric algebra provides an algebraic framework that greatly simplifies well-
known equations, the most popular example being the Maxwell equations, which
reduce to a single equation in geometric algebra [25]. In robotics, geometric alge-
bra has been used for differential kinematics [26]. Inverse kinematics also serves
as a good example of the geometric significance of geometric algebra objects,
since the problem can be solved iteratively by using the intersection operations
of the geometric primitives in the algebra [27]. Other applications of these ge-
ometric primitives are tools for medical robotics to provide geometric intuitive
techniques for planning surgical paths [28]. There also already exists a link of

Forward Dynamics for Kinematic Chains using Geometric Algebra 3

the previously mentioned use-cases of the forward dynamics simulation and geo-
metric algebra in the form of modeling optimal control problems using geometric
primitives [29]. Albeit, in that work, the dynamics were included after solving
the optimal control problem in the form of Lagrangian inverse dynamics in order
to obtain torque commands. Another interesting way to use the geometric prim-
itives is for object manipulation from stereoscopic images [30]. Mathematically,
geometric algebra presents fresh insights on screw theory [31], which is often
used in robotics to express kinematic relationships.

Despite this growing popularity of geometric algebra in the field of robotics,
there are still many algorithms that need to be derived in their geometric algebra
version in order for it to become a single tool for computation in robotics. One
of them is the efficient computation of the forward dynamics, which we are
addressing in this paper. Hence, our contributions are as follows:

– we define an inertia tensor using elements from conformal geometric algebra,
– we formulate the articulated body inertia in conformal geometric algebra,
– we formulate the recursive forward dynamics in conformal geometric algebra,
– we implement the presented algorithms in an open-source library gafro3 that

we first presented in [29].

The rest of the paper is organized as follows: Section 2 presents related work,
Section 3 introduces the mathematical background of geometric algebra and
robot dynamics, in Section 4 we show our formulation of the inertia tensor in
CGA, in Section 5 we then introduce the recursive dynamics algorithms in CGA,
finally in Section 6 we discuss some mathematical implications.

2 Related Work

This paper describes the recursive computation of the forward dynamics in con-
formal geometric algebra. Since this is an important concept in robotics, natu-
rally, there have been been many algorithms and implementations tackling this
problem. Mathematically it can be solved by deriving the Lagrangian formula-
tion of the robot dynamics and solving for the joint accelerations. This approach,
however requires the inversion of the generalized mass matrix, which is usually
not the most efficient way of computation [32]. Since these dynamics simulations
are frequently used in applications that require a high computational efficiency,
such as control, it is important that these accelerations are computed as fast
as possible. The recursive formulation of solving the forward dynamics problem
called the Articulated Body Algorithm (ABA) was first presented in Feather-
stone’s seminal work [33] and has been shown to have complexity O(n). Our
algorithms build on this work and we will explain in the mathematical discus-
sions how the approaches differ, and where the advantages of CGA lie.

Researchers have realized before that mathematical tools from geometry can
lead to simplified and unified treatments of the robot dynamics. By treating
3 https://gitlab.com/gafro

https://gitlab.com/gafro

4 Tobias Löw and Sylvain Calinon

SE(3) as a Lie group and adopting basic ideas from Riemannian geometry, a
geometric variant of the robot dynamics was derived in [34]. That work showed
that by looking at the problem through the lens of geometry, various impractical
notational conventions can be avoided and that the connections to differential
geometry lead to easily factorizable and differentiable equations, making it very
attractive for optimization and optimal control. These ideas of exploiting Lie
groups and Lie algebras were extended further to show the natural emergence of
a matrix factorization of the mass matrix and its inverse [35], where a recursive
algorithm is embedded within its structure. Furthermore, the inherent invariance
w.r.t the reference frame allows for arbitrary frames in the kinematic modeling
[36]. Our formulation in CGA not only retains this coordinate invariance, but
also, as we will explain later, actually uses a double covering group of SE(3) for
its computations and that the algebra contains more classes of transformations
including non-rigid ones.

The theory of dual quaternion algebra presents another paradigm to ap-
proaching problems in robotics from a geometric perspective. There are works
that are describing the robot dynamics using dual quaternion algebra, currently
in the form of Newton-Euler type dynamics, which are less efficient for the com-
putation of the accelerations [37]. A notable insight from that work is that by
combining the geometric perspective from screw theory, the thorougness of Lie
algebra and a simple algebraic framework in the form of dual quaternion algebra
leads to simplified and more general expressions. This insight seamlessly trans-
lates to geometric algebra due to their their common roots in Clifford algebra.
Hence, there are also works that utilize geometric algebra to derive a Newton-
Euler type algorithm for robot inverse dynamics and control of manipulators [38]
and multicopters [39]. In contrast to those works, we are presenting a recursive
forward dynamics algorithm following Featherstone’s formalism of the articu-
lated body algorithm. In order to give a complete overview and to integrate our
inertia tensor formulation into the Newton-Euler algorithm, we are also showing
the inverse dynamics. Previous work in geometric algebra also looked at the in-
ertia tensor and showed that it was fully contained within the geometric algebra
G0,6,2 [40]. Since this algebra is comparatively large, that work asked the ques-
tion regarding the minimal algebra containing the adjoint operation of SE(3).
While the presented inertia tensor and transformations of it require multiple
operations, the proposed approach is fully contained within the algebra.

3 Background

In this section we are briefly introducing robot dynamics and geometric algebra.
We will use the following notation throughout the paper: x to denote scalars, x
for vectors, X for matrices, X for multivectors and X for matrices of multivec-
tors.

Forward Dynamics for Kinematic Chains using Geometric Algebra 5

3.1 Robot Dynamics

The manipulator equation for computing the dynamics of the system is

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ − τext, (1)

where M(q) is known as the inertia or generalized mass matrix, C(q, q̇) is rep-
resenting Coriolis/centrifugal forces, g(q) stands for the gravitational forces, τ is
the vector of joint torques and τext are the external torques. The problem of for-
ward dynamics then arises when solving Equation (1) for the joint accelerations
q̈, i.e.

q̈ = M−1(q)
(
τ − τext −C(q, q̇)q̇ − g(q)

)
. (2)

This matrix algebra approach to solving the forward dynamics therefore requires
finding the inverse of the generalized mass matrix M−1(q), which can be compu-
tationally demanding. Hence, the previous work on deriving recursive algorithms
for the forward dynamics showed how the inverse mass matrix could be efficiently
factorized, alleviating the need of matrix inversion. This concept translates to
the formulation of the forward dynamics in CGA, since we also don’t compute
the mass matrix or its inverse explicitly.

3.2 Geometric Algebra

Geometric algebras, also known as Clifford algebras, are actually a family of alge-
bras that can be found as the quotient algebras of tensor algebras over quadratic
spaces. Historically, geometric algebra is a unification of Hamilton’s quaternion
algebra and Grassmann’s exterior algebra. It is a single algebra for geometric
reasoning, alleviating the need of utilizing multiple algebras to express geometric
relations. Geometric algebras are defined for vector spaces Rp,q,r of dimension
n = p+ q+ r, where p, q and r are the number of basis vectors that square to 1,
-1 and 0, respectively.

The fundamental multiplication operation is called the geometric product

ab = a · b+ a ∧ b, (3)

and is the sum of an inner · and an outer ∧ product. The outer product is
equivalent to the exterior product of Grassman algebra and is an operation that
spans subspaces. Therefore, unlike the vector algebra of Rp,q,r, the associated
geometric algebra Gp,q,r uses subspaces of the associated vector space as ele-
ments of computations. The basic elements, called blades, are found as the outer
product of k linearly independent vectors, which leads to 2n = 2p+q+r blades
for a geometric algebra. The linear combination of basis blades is then called a
multivector. The number k is then called grade of the multivector.

The computation with subspaces leads to nullspace representations of ge-
ometric primitves w.r.t either the inner or the outer product. In CGA, these
primitives include points, lines, planes, circles and spheres. Since they are not

6 Tobias Löw and Sylvain Calinon

within the scope of this paper, we refer to [41] for their defintion and construction
and to [29] for their usage in optimal control applications in robot manipulation.

In this paper, we are using CGA to formulate the forward dynamics, which
is G4,1. As it has four basis vectors that square to 1 and one that squares to -1
it is clearly a pseudo-Euclidean space, in fact it has a Minkowski signature. It
can be understood as extending the Euclidean space R3 with a Minkowski plane
R1,1, i.e. R4,1 = R3⊕R1,1. This leads to several transformations beyond the rigid
body transformations presented in the following section. We will discuss those
transformations later in Section 6.4.

Rigid Body Transformations Rigid body transformations in CGA are achieved
using a representation of the Lie group Spin(3)⋉R3 called motors, which is a dou-
ble cover of the matrix Lie group of rigid body transformations in 3-dimensional
Euclidean space SE(3), i.e. there exists a surjective two-to-one homomorphism
from Spin(3)⋉ R3 to SE(3). The associated Lie algebra of the motor group is
a bivector algebra and is connected to the motor manifold by the exponential
map and its inverse, the logarithmic map. The bivectors of the Lie algebra are
essentially (dual) lines in CGA, i.e. they define the screw axis of the motor.
Motors are also isomorphic to dual quaternions. The difference between them is
that CGA is a larger algebra which introduces more geometric primitives and
alleviates the need of special adjoint operations to transform them.

Motors can be applied to arbitrary multivectors in the algebra by using a
sandwich product operation (similar to how quaternions rotate vectors)

Y = MXM̃, (4)

where M̃ stands for the reverse of a motor, which can thought of as being
similar to a conjugate quaternion. This operation is grade preserving, i.e. it
leaves the number of k basis vectors in outer product representation unchanged
and thus does not change what the multivectors represent. Herein lies one of the
advantages of CGA, as it extends linear transformations naturally from vectors
to the entire algebra, i.e. motors can be applied to all multivectors in a uniform
manner, they are a more general representation of rigid body transformations
and can also be used to transform all geometric primitives that are part of the
algebra and not just vectors. This extension is called outermorphism.

Motors are used to represent the forward kinematics of a serial kinematic
chain, i.e. the motor M(q), given the configuration q, can be computed with

M(q) =

N∏
j=1

Mj(qj). (5)

The motors Mj(qj) are the current joint motors of the j-th joint given the joint
position. They are found as

Mj(qj) = exp (qjBj) , (6)

where Bj is the bivector describing the screw axis of the j-th joint. In the fol-
lowing we will be using Mj instead of Mj(qj) for a shorter notation.

Forward Dynamics for Kinematic Chains using Geometric Algebra 7

Twists and Wrenches Utilizing the terminology of screw theory, the screws
that carry velocity and force information are called twists and wrenches, respec-
tively. In CGA, they are represented as bivectors. The twists are identified with
the bivectors that generate rigid body motions, i.e. the bivector that result from
the logarithmic mapping of motors. Hence, their space is found as

V ∈ span{e23, e13, e12, e1∞, e2∞, e3∞}, (7)

where the six objects forming a twist are bivectors. The space of twists alge-
braically corresponds to the bivector dual lines that form the screw axes of
motors.

Wrenches, on the other hand, are usually called coscrews, meaning that there
is a certain duality relationship between twists and wrenches. In matrix Lie alge-
bra, however, this duality is not directly visible, since both twists and wrenches
are simply 6-dimensional vectors. In conformal geometric algebra, this duality is
explicitly found via multiplication with the conjugate pseudoscalar Ic = Ie0 [42],
where I is the standard pseudoscalar of CGA, i.e. I = e0123∞. Multiplication of
Ic with a twist yields the space of wrenches as

W ∈ span{e23, e13, e12, e01, e02, e03}. (8)

Using these definitions, the inner product of a twist V and a wrench W
reduces to the scalar product and calculates the power of the motion, i.e.

p = −V · W. (9)

In Lie theory, twists are elements of the Lie algebra and wrenches are elements
of the dual Lie algebra. As per the above definitions, this duality relationship can
be directly seen from the different bivector blades in the respective spaces. The
elements also allow for a direct geometrical interpretation: the linear velocity
part of twists (i.e. e1∞, e2∞, e3∞) corresponds to a direction bivector, whereas
the force part of wrenches (i.e. e01, e02, e03) corresponds to a tangent bivector.
This geometric interpretation further clarifies why twists and wrenches transform
differently under rigid body transformations, i.e. why in matrix Lie algebra the
adjoint matrix Ad transforms twists and the dual adjoint matrix Ad∗ transforms
wrenches. Using conformal geometric algebra, this distinction is not necessary,
since, by definition of the algebra, direction and tangent bivectors (i.e. linear
velocities and forces) multiply differently using the geometric product. Hence, a
motor can be used to transform both twists and wrenches according to Equation
(4) which means it simultaneously represents the adjoint and the dual adjoint
operation.

Similarly, a unified expression for the Lie bracket can be found in conformal
geometric algebra. The Lie bracket is a linear mapping between elements of the
Lie algebra. For twists acting on twists or wrenches, this mapping can be found
as

V ′ = V1 × V2 and W ′ = V ×W, (10)

8 Tobias Löw and Sylvain Calinon

where × is the commutator product that is defined as

X × Y =
1

2
(XY − Y X). (11)

The implications of these definitions are very interesting, since CGA simul-
taneously clarifies the duality relationship of twists and wrenches, by removing
the ambiguity of what a 6-dimensional vector represents through an algebraically
determined difference. Furthermore, it also unifies their treatment by having the
same adjoint operations.

4 Inertia Tensor

In this section, we are presenting our formulation of the general inertia tensor in
CGA. This formulation is a direct extension of the definition of the rotational
inertia tensor in dual quaternion algebra [37]. The rotational part can be iden-
tified in conformal geometric algebra with the bivector blades e23, e13, e12. We
add the bivector blades e01, e02, e03, such that a general inertia element becomes

I ∈ span{e23, e13, e12, e01, e02, e03}. (12)

Note that an inertia element uses the same basis blades as a wrench that was
defined in Equation (8). This follows from the fact that we want the inner product
of an inertia element and twists to be the scalar product in order to compute
the different components of the resulting wrenches.

Hence, the inertia tensor I consists of six bivector-valued inertia elements,
one for each component of the resulting wrench. We define the geometric algebra
inertia tensor as the union of all elements belonging to the blade index list II ,
i.e.

I = {Iek}ek∈II , (13)

where the upper blade index indicates which component of the resulting wrench
it is responsible for. In accordance with the definition of a wrench, these blade
indices therefore are

II = {e23, e13, e12, e01, e02, e03}. (14)

4.1 Linear Mapping from Twist to Wrench

The inertia tensor is a linear operator that acts on twists and produces wrenches.
This linear map can be found as the sum of the inner products of each inertia
element with the given twist, i.e.

W = I [V] = −
∑

ek∈II

(Iek · V)ek. (15)

At this point we would like to mention that we generally call the mathe-
matical objects twists and wrenches according to the definion of the spaces in

Forward Dynamics for Kinematic Chains using Geometric Algebra 9

Equations (7) and (8), respectively. The physical interpretation, however, can of
course be a mapping either from velocity to momentum or acceleration to force.
In both cases, the mathematical bivector spaces are the same, hence we treat it
using a unified terminology.

4.2 Rigid Body Transformation of Inertia Tensor

Often, it is required to view the inertia tensor from a frame that is different
to the inertial frame. Hence, it is necessary to have a formulation of how an
inertia tensor behaves under rigid body transformations. These are expressed
using motors in CGA, hence, given a motor M , we define the transformation of
an inertia tensor and denote this operation using the symbol ∗, i.e.

M ∗ I =

{
M

(∑
ek∈II

⟨MIekM̃⟩ej
ek

)
M̃

}
ej∈II

, (16)

where the operator ⟨·⟩ej extracts the ej blade component of the enclosed expres-
sion.

With equations (15) and (16), we can find the equivariance relationship

MI [V] M̃ = (M ∗ I)
[
MVM̃

]
. (17)

Hence, transforming a wrench produced by applying an inertia tensor to a twist,
gives the same wrench as first transforming the inertia and the twist individually
and then applying the transformed inertia tensor to the transformed twist.

4.3 Spatial Inertia

Traditionally, the spatial inertia is a 6 × 6 symmetric matrix that contains the
information about the rotational inertia, the mass and the center of mass. We
show in this section how to obtain it in our CGA formalism, in order to give a
more detailed explanation of the involved operations.

Given an arbitrary rigid body, we have its inertial parameters as the mass m,
the motor describing the location of the center of mass MCoM and the inertia
matrix I, i.e. a symmetric positive-definite matrix with the six independent
components ixx, iyy, izz, ixy, ixz, iyz. Thus, we find the the general inertia tensor
I as a function of m and I, i.e. the elements of I are

Ie23 = ixxe23 − ixye13 + ixze12, Ie01 = me01,

Ie13 = −ixye23 + iyye13 − iyze12, Ie02 = me02, (18)
Ie12 = ixze23 − iyze13 + izze12, Ie03 = me03.

Note the sign change in certain elements of the inertia, that is due to the metric
tensor of CGA, which led to our choice of basis bivectors to closely match and
facilitate the implementation. Then, we find the spatial inertia tensor ICoM by
transforming the inertia tensor I using the motor describing the location of the
center of mass MCoM

ICoM = MCoM ∗ I. (19)

10 Tobias Löw and Sylvain Calinon

4.4 Articulated Body Inertia

One of the key concepts that was introduced by Featherstone for computing the
dynamics of multibody systems is the Articulated Body Inertia (ABI). The ABI
is the inertia that a body appears to have if it is part of a multibody system
[32]. It is an integral part for the efficient computation of the forward dynamics.
Although the ABI is structurally and mathematically identical to the spatial
inertia, they physically differ in that the spatial inertia converts from velocity
to momentum and the ABI from acceleration to force [43].

The computation of the ABI is a recursive algorithm that iteratively adds
the influence of child bodies to parent bodies. The recursion starts with the
outermost body, where the ABI is identical to the spatial inertia tensor of the
body. We present the CGA formulation of this computation in Algorithm 1.
Here, q denotes the current joint positions, Ij the link inertias, Mj the current
joint motors and Bj the screw axes (as bivector) of the joints. The computed
articulated body inertia of the links is Îj .

Algorithm 1: Articulated Body Inertia
Input: q,Ij ,Mj , Bj

Output: Îj

În ←MCoM
n ∗ In

for j = n− 1 to 1 do
WBj+1 = −Îj+1 [Bj+1] (Bj+1 · Îj+1 [Bj+1])

−1

Īj =
{
Îek
j+1 + (Bj+1 · Îek

j+1)WBj+1

}
ek∈II

Îj = MCoM
j ∗ Ij +Mj+1 ∗ Īj

end

5 Recursive Dynamics Algorithms

In this section, we are presenting the recursive forward dynamics algorithm for
serial kinematic chains using CGA. The recursive computation of the inverse
dynamics of serial kinematic chains has already been presented in [44], where
the authors used the variant known as motor algebra. We show the recursive
algorithm here for the sake of completeness and consistency in the notation.

5.1 Recursive Inverse Dynamics

The problem of inverse dynamics is defined as calculating the joint torques τ
given the joint positions q, velocities q̇ and accelerations q̈. Solving this problem
is essential for controlling robots in order to achieve a desired motion, such as
in inverse dynamics control. Recursive algorithms that break down the problem
into smaller sub-problems and solve them iteratively are efficient and widely
used in robotics due to their ability to handle complex kinematic chains and
their recursive nature allows for easy implementation.

Forward Dynamics for Kinematic Chains using Geometric Algebra 11

The algorithm has two stages: the forward and the backward pass. Using
the joint positions qj , velocities q̇j and accelerations q̈j , the relative joint motors
Mj,j−1, the joint twists Vj and their time derivatives V̇j are computed in the
forward pass. Here, Bj denote the joint axes and MCoM

j the center of mass of
the child link of the j-th joint, relative to the joint’s axis of rotation. Mj,j−1

therefore relates the centers of mass of two consecutive links. Afterwards, in the
backward pass, the wrenches acting on the joints Wj are computed using the
inertia map Ij as it was defined in Equation (15). The joint torques τj are then
found by the inner product of the wrench and the joint axis. The entire algorithm
is given in Algorithm 2.

Algorithm 2: Recursive Inverse Dynamics
Input: q, q̇, q̈
Output: τ
V0 ← 0
for j = 1 to n do

Mj,j−1 = M̃CoM
j M̃j(qj)M

CoM
j−1 Vj = Mj,j−1Vj−1M̃j,j−1 + q̇jBj

V̇j = Mj,j−1V̇j−1M̃j,j−1 + q̇j(Bj × Vj) + q̈jBj

end
V̇n+1 ← −ge3i

Wn+1 ←Wext

for j = n to 1 do
Wj = M̃j+1,jWj+1Mj+1,j + Ij

[
V̇j

]
− Vj × Ij [Vj] τj = −Wj ·Bj

end

5.2 Recursive Forward Dynamics

The problem of forward dynamics is defined as finding the accelerations q̈ given
the joint positions q, velocities q̇ and joint torques τ . It is a method to simulate
the motion of articulated bodies given their physical properties and constraints.

The algorithm for recursively computing the forward dynamics in CGA is
given in Algorithm 3. Note that the computation of the ABI of Algorithm 1 can
be fully integrated in this algorithm and does not need to be performed sepa-
rately. The algorithm consists of three recursions over the joints of the system,
two forward and one backward recursions. In the first forward recursion, the spa-
tial transformations of the joints are computed and the corresponding velocities
are propagated through the kinematic chain. The transformations are denoted
by the motors Mj and the velocities by the twists Vj . The velocity and gravity
induced accelerations and forces are then V̇j and Wb,j , respectively. Afterwards,
in the backward pass, those forces are combined with the inertial forces WBj

(or technically momenta) induced by the articulated body inertias Îj and are
propagated to parent joints. If present, external forces Wext can also be taken
into account in this step. Using these quantities, the bias joint accelerations ˆ̈qj
and torques τ̂j are calculated, where the currently applied torques τj are also
considered. Here, the quantities W̄j and Ŵj are helper variables to reduce the

12 Tobias Löw and Sylvain Calinon

complexity of a single line in the algorithm. Lastly, in the second forward pass,
the correct joint accelerations q̈j are computed.

Algorithm 3: Recursive Forward Dynamics
Input: q, q̇, τ
Output: q̈
V0 ← 0
V̇0 ← −ge3i

for j = 1 to n do
Mj = Mj(qj)

Vj = M̃jVj−1Mj + q̇jBj

V̇j = M̃jV̇j−1Mj + q̇j(Bj × Vj)
ICoM

j = MCoM
j ∗ Ij

Wb,j = ICoM
j

[
V̇j

]
− Vj × ICoM

j [Vj]
end
Wn+1 ←Wext

for j = n to 1 do
Wj = Mj+1Wj+1M̃j+1 +Wb,j

Ωj = −
(
Bj+1 · Îj+1 [Bj+1]

)−1

WBj+1 = ΩjÎj+1 [Bj+1]
τ̂j = τj + (Bj · Wj)

W̄j = Ŵj+1 +
(
Ŵj+1 ·Bj+1 + τ̂j+1

)
WBj+1

Ŵj = Mj+1W̄jM̃j+1

ˆ̈qj =
(
τ̂j +Bj · Ŵj

)
Ωj

end
ˆ̇V0 ← 0
for j = 1 to n do

¯̇Vj = M̃j
ˆ̇Vj−1Mj

ˆ̇Vj = ¯̇Vj +
(
WBj ·

¯̇Vj + ˆ̈qj
)
Bj

q̈j = ˆ̈qj +
(
MjWBjM̃j

)
· ˆ̇Vj−1

end

5.3 Numerical Validation

In order to be sure that our algorithms calculate the correct values for the robot
dynamics, we implemented them for CGA using C++20 making them available
as an open-source library. Since this library is heavily templated, especially on
the numeric type, it is possible to use it in combination with libtorch. This means
that all the mentioned computations can be used with PyTorch [45], making
them parallelizable on a GPU. Thus, the recursive forward dynamics can be effi-
ciently leveraged for sampling-based model predictive control and reinforcement
learning.

Forward Dynamics for Kinematic Chains using Geometric Algebra 13

Here, we use this implementation to compare the resulting values with the
output of equivalent functions from existing libraries. We chose to compare to
Pinocchio and RBDL, since both of them are using implementations of spatial
vector algebra, as well as KDL which is a library within the ROS framework that
uses an inversion of the mass matrix in order to compute the forward dynamics.
The results of this numerical comparison can be seen in Table 1. The results
show that our algorithm correctly computes the forward dynamics of the system
and closely match the results based on spatial vector algebra, but the matrix
inversion in KDL clearly introduces numerical imprecisions.

Table 1: Numerical errors of the calculated acceleration from different forward
dynamics solvers. The values are the norm difference of the resulting accelera-
tions, averaged over 1000 computations. Each time we randomly sampled differ-
ent values for the position, velocity and torque.

Pinocchio RBDL KDL

Inverse Dynamics 1.28015e-14 1.27072e-14 0.668193
Forward Dynamics 6.73759e-14 7.06135e-14 125.061

6 Discussion

6.1 Computational Efficiency of the Algorithm

Since this algorithm is heavily inspired by Featherstone’s original formulation of
the articulated body algorithm, the computational efficiency for the geometric
algebra version is also O(n) in theory. However, since the implementations of our
recursive forward dynamics and of geometric algebra for robotics in general are
still in their infancy, they are not as highly optimized as other more established
libraries that are using matrix algebra. Since we are currently prioritizing the
theoretical developments, we have made no attempt at optimization. For this
reason, our current implementation takes roughly one order of magnitude longer
to compute the forward dynamics. The main reason for this is the allocation
of additional memory due to unnecessary copy operations, mainly in obtaining
fundamental parameters of the robotic system and the computation of the ar-
ticulated body inertia. This is an issue that we will be adressing in the future,
since it mostly requires some software engineering effort. In general, we expect
the recursive forward dynamics in geometric algebra to compute the accelera-
tions more efficiently than other formulations due to the uniform treatment of
the involved twists and wrenches in the forward and backward passes. This ex-
pectation is backed by the findings about the computational efficiency of the
forward kinematics [29]. Here, geometric algebra alleviates the need not only of
having a dual adjoint matrix, but that of having an adjoint matrix altogether.
This is because twists, wrenches and all other objects, such as the screw axes,
can be uniformly transformed using the motors, which reduces the amount of
computation and memory needed. This extends also to the inertia tensor, since

14 Tobias Löw and Sylvain Calinon

with our formulation of its elements as wrench bivectors, they are part of the
algebra and can thus also be transformed using motors directly.

6.2 Computational Properties of Motors

When comparing the computational properties of motors in CGA to matrices,
there are several important quantities to consider, i.e. the required memory, the
number of floating-point operations for transformations and for composition.
First of all, in terms of memory, it is easy to see that motors requiring the stor-
age of 8 floats are a more compact representation than matrices that use at least
12 floats, since the bottom row is constant and can be treated separately. The
scenario in which matrices are more efficient than motors is if a large number
of vectors needs to be transformed In this case, matrices generally require less
floating-point operations. For composition, on the other hand, i.e. chaining mul-
tiple transformations, motors and dual quaternions are more efficient [46]. So
depending on the scenario, one or the other representation might be preferred.
Converting motors to matrices, however, is easy and relatively cheap, so in gen-
eral it could be beneficial to store transformations as motors and to chain them
in this form for e.g. the computation of the forward kinematics and to only con-
vert them to matrices if a large number of points needs to be transformed. More
analysis needs to be performed on this, since also it might end up being worth to
do slightly more computation if it means to move less data around. A study on
the use of the different representations for robot kinematics has been performed
in [46] and a similiar one should be made for the dynamics.

Other advantages that motors and dual quaternions share over transforma-
tion matrices is that they are simpler type invariants, i.e. violations of the unit
constraint are much easier to detect and corrections are much cheaper to en-
force, i.e. re-normalizing a motor or a unit dual quaternion is a lot easier than
re-orthonormalizing a matrix. Furthermore, in some applications, it is necessary
to interpolate between transformations, which is also much easier to achieve with
motors than with matrices.

Due to the widespread usage of matrices, modern systems use highly opti-
mized algorithms for matrix operations and the architecture around graphical
processing units also helps to parallelize these operations. Hence, an argument
could be made for using matrices in the implementation. For this, we want to
point out that in general, for every geometric algebra as a real, associative al-
gebra, one can find an isomorphic matrix algebra. In the case of CGA G4,1 it
is the algebra of 4× 4 complex matrices, i.e. G4,1 = C4×4. This means that the
presented algorithms could also be implemented entirely using (sparse) matrices
as opposed to the bitset-based multivector implementation that we utilized in
this paper.

6.3 Comparison to Spatial Vector Algebra

Spatial vector algebra is a framework that is designed to treat screws as unified
6-dimensional vectors. It requires twelve basis vectors to form two vector spaces,

Forward Dynamics for Kinematic Chains using Geometric Algebra 15

one for motions, i.e. twists, and one for forces, i.e. wrenches. The bases of the
two vector spaces are made dual to each other by using a dual coordinate sys-
tem known as Plücker coordinates [47]. Instead of an inner product, the algebra
defines a scalar product between the two spaces that, like the inner product of
Equation (9), yields the power of the motion. The equivalent of the Lie bracket
that we introduced for CGA in Equations (10) and (11) is implemented in spa-
tial vector algebra using the definition of two separate cross products, in order
to treat the two vector spaces of motions and forces differently. Spatial vector
algebra uses mathematical constructions and definition that are sometimes not
seen in the implementation, i.e. the matrices that are used in the implementation
do not encode the distinction between screws and coscrews.

6.4 Clifford Algebra and the Conformal Model of Geometry

In this section, we want to emphasize the importance of Clifford algebra in
physics and in particular with respect to Lie groups. To this end, in a first step
we use the general geometric algebra Gp,q to introduce some basic concepts and
afterwards we explain the implications w.r.t. CGA G4,1. First, we want to in-
troduce versors, which are the geometric product of n non-null vectors of Rp,q,
i.e. V =

∏n
i xi with x ∈ Rp,q. The set of versors together with the geometric

product form the Clifford group Γ (p, q). Versors that fullfill V Ṽ = ±1, where Ṽ
is the reverse operation that we previously introduced for motors, are known as
unitary versors and form the pin group Pin(p, q). The additional restriction to
V Ṽ = 1 yields the spin group Spin(p, q) as a subgroup. The spin group actu-
ally is a representation of spinors, which are a fundamental concept in physics
and more information can be found here [48]. In the context of this paper, it is
relevant to note that Pin(p, q) and Spin(p, q) are double covers of the orthogo-
nal group O(p, q) and the special orthogonal group SO(p, q), respectively. In the
specific case of CGA as G4,1, the motors as a group form a subgroup of Pin(4, 1)
and represent rotations and translations in R3. We also know that the conformal
group Conf(p), which includes orthogonal transformations, i.e. reflections and
rotations, translations, dilations and special conformal transformations, i.e. mul-
tiplicative inversions, is isomorphic to the orthogonal group O(p + 1, 1). Thus
Conf(3) = O(4, 1) and the covering group Pin(4, 1) actually represents con-
formal transformations on R3. Hence, using CGA, we can perform conformal
transformations on R3 which usually are highly non-linear and require slow al-
gorithms to apply. So here, CGA effectively allows to express them using linear
operators and via the versor representation reduces composition to multiplica-
tion of vectors. The conformal group has ten unique generators, which in CGA
correspond to the ten bivectors of the algebra. Six of those are forming the space
of twists, which are the Lie algebra to the motor subgroup. The three bivectors
carrying the force information from the wrenches form the generators for hy-
perbolic rotations. Here, an interesting future research directions would be to
uncover the implications of this connection. The last bivector e0∞ is responsible
for dilations, which means that CGA also contains the group of direct similarities

16 Tobias Löw and Sylvain Calinon

Sim(3) as a subgroup. The fact that CGA contains non-rigid transformations
could mean that the presented dynamics algorithms could be extended to more
complex dynamics such as soft robotics or to model deformable objects.

7 Conclusion

In this paper, we presented the formulation of the recursive forward dynamics
and the spatial and articulated body inertia in CGA. Although the presented
results in their current stage of research are of theoretical nature, we have shown
their validity in simulation experiments. Additionally, the algorithms are imple-
mented in an open-source library, making them ready to be used in practical
applications. Future work on this library now includes addressing the problem
of contact modeling in geometric algbra, since this would be the next step in or-
der to provide full simulation capabilities with geometric algebra. However, we
want to point out that by including the forward dynamics, geometric algebra, in
principle, is now capable of replacing traditional vector/matrix based libraries
for computing the kinematics and dynamics of serial kinematic chains. It, how-
ever, offers many additional tools for geometrically modeling various problems
in robotics.

The formulation of CGA offers a unified view on screws, it allows for the
coordinate invariant formulations of Lie groups and has computational and rep-
resentational advantages. Thus, it not only unifies several frameworks into one
algebra, but also, via the direct connection of the pin group as a double cover
to the orthogonal group, it facilitates the geometric interpretation of conformal
mappings compared to matrix algebra and makes them computationally more
efficient.

The current research is limited by its implementation and the resulting lower
computational performance compared to other libraries. Future research on using
CGA can therefore have several directions. First, it should be explored how the
different possible implementations of geometric algebra affect the performance
of the algorithms and to improve the implementation in general. And second,
the mathematical background of geometric algebra offers several directions for
possible extensions and applications to other areas such as deformable objects
and soft robotics. For this reason, the contributions should be seen from a math-
ematical perspective, opening doors to new potential research directions and
uncovering mathematical and geometric connections that are hidden in other
frameworks.

Forward Dynamics for Kinematic Chains using Geometric Algebra 17

References

1. Hwangbo, J., Lee, J. & Hutter, M. Per-Contact Iteration Method for Solving
Contact Dynamics. IEEE Robot. Autom. Lett. 3, 895–902 (Apr. 2018).

2. Liang, J. et al. GPU-Accelerated Robotic Simulation for Distributed Reinforce-
ment Learning http://arxiv.org/abs/1810.05762 (2024). Pre-published.

3. Koenig, N. & Howard, A. Design and Use Paradigms for Gazebo, an Open-Source
Multi-Robot Simulator in 2004 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) (IEEE Cat. No.04CH37566) 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566). 3 (IEEE, Sendai, Japan, 2004), 2149–2154.

4. Todorov, E., Erez, T. & Tassa, Y. MuJoCo: A Physics Engine for Model-Based
Control in 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems 2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (Oct. 2012), 5026–5033.

5. Coumans, E. & Bai, Y. PyBullet, a Python Module for Physics Simulation for
Games, Robotics and Machine Learning 2016–2021.

6. V-REP: A Versatile and Scalable Robot Simulation Framework | IEEE Conference
Publication | IEEE Xplore https://ieeexplore.ieee.org/document/6696520
(2024).

7. Carpentier, J. et al. The Pinocchio C++ Library : A Fast and Flexible Imple-
mentation of Rigid Body Dynamics Algorithms and Their Analytical Derivatives
in 2019 IEEE/SICE International Symposium on System Integration (SII) 2019
IEEE/SICE International Symposium on System Integration (SII) (IEEE, Paris,
France, Jan. 2019), 614–619.

8. Smits, R. KDL: Kinematics and Dynamics Library http://www.orocos.org/kdl.
9. Felis, M. L. RBDL: An Efficient Rigid-Body Dynamics Library Using Recursive

Algorithms. Auton Robot 41, 495–511 (Feb. 1, 2017).
10. Carius, J., Ranftl, R., Farshidian, F. & Hutter, M. Constrained Stochastic Opti-

mal Control with Learned Importance Sampling: A Path Integral Approach. The
International Journal of Robotics Research 41, 189–209 (Feb. 2022).

11. Mastalli, C. et al. Crocoddyl: An Efficient and Versatile Framework for Multi-
Contact Optimal Control http://arxiv.org/abs/1909.04947 (2022). Pre-
published.

12. Williams, G., Aldrich, A. & Theodorou, E. A. Model Predictive Path Integral
Control: From Theory to Parallel Computation. Journal of Guidance, Control,
and Dynamics 40, 344–357 (Feb. 2017).

13. Pezzato, C. et al. Sampling-Based Model Predictive Control Leveraging Paral-
lelizable Physics Simulations http://arxiv.org/abs/2307.09105 (2024). Pre-
published.

14. Sleiman, J.-P., Farshidian, F. & Hutter, M. Constraint Handling in Continuous-
Time DDP-Based Model Predictive Control in 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA) (May 30, 2021), 8209–8215.

15. Bjelonic, M. et al. Offline Motion Libraries and Online MPC for Advanced Mo-
bility Skills. The International Journal of Robotics Research, 22.

16. Plaku, E., Kavraki, L. E. & Vardi, M. Y. Motion Planning With Dynamics by a
Synergistic Combination of Layers of Planning. IEEE Trans. Robot. 26, 469–482
(June 2010).

17. Liu, L., Yin, K., van de Panne, M., Shao, T. & Xu, W. Sampling-Based Contact-
rich Motion Control. ACM Transactions on Graphics (TOG) 29, 1–10 (2010).

http://arxiv.org/abs/1810.05762
https://ieeexplore.ieee.org/document/6696520
http://arxiv.org/abs/1909.04947
http://arxiv.org/abs/2307.09105

18 Tobias Löw and Sylvain Calinon

18. Calinon, S. Gaussians on Riemannian Manifolds: Applications for Robot Learning
and Adaptive Control. IEEE Robotics Automation Magazine 27, 33–45 (June
2020).

19. Saveriano, M., Abu-Dakka, F. J. & Kyrki, V. Learning Stable Robotic Skills on
Riemannian Manifolds. Robotics and Autonomous Systems 169, 104510 (Nov. 1,
2023).

20. Ti, B., Razmjoo, A., Gao, Y., Zhao, J. & Calinon, S. A Geometric Optimal Con-
trol Approach for Imitation and Generalization of Manipulation Skills. Robotics
and Autonomous Systems 164, 104413 (June 1, 2023).

21. Jaquier, N., Rozo, L., Caldwell, D. G. & Calinon, S. Geometry-Aware Manipu-
lability Learning, Tracking, and Transfer. The International Journal of Robotics
Research 40, 624–650 (Feb. 2021).

22. Beik-Mohammadi, H., Hauberg, S., Arvanitidis, G., Neumann, G. & Rozo, L. Re-
active Motion Generation on Learned Riemannian Manifolds. The International
Journal of Robotics Research, 02783649231193046 (Aug. 28, 2023).

23. Cheng, C.-A. et al. RMPflow: A Geometric Framework for Generation of Multi-
task Motion Policies. IEEE Transactions on Automation Science and Engineering
18, 968–987 (July 2021).

24. Marić, F. et al. Riemannian Optimization for Distance-Geometric Inverse Kine-
matics. IEEE Trans. Robot. 38, 1703–1722 (June 2022).

25. Baylis, W. E. in Ablamowicz, R. et al. Lectures on Clifford (Geometric) Alge-
bras and Applications (eds Abłamowicz, R. & Sobczyk, G.) 91–133 (Birkhäuser
Boston, Boston, MA, 2004).

26. Bayro-Corrochano, E. & Zamora-Esquivel, J. Differential and Inverse Kinematics
of Robot Devices Using Conformal Geometric Algebra. Robotica 25, 43–61 (Jan.
2007).

27. Aristidou, A. & Lasenby, J. FABRIK: A Fast, Iterative Solver for the Inverse
Kinematics Problem. Graphical Models 73, 243–260 (Sept. 2011).

28. Bayro-Corrochano, E., Garza-Burgos, A. M. & Del-Valle-Padilla, J. L. Geometric
Intuitive Techniques for Human Machine Interaction in Medical Robotics. Int J
of Soc Robotics 12, 91–112 (Jan. 2020).

29. Löw, T. & Calinon, S. Geometric Algebra for Optimal Control With Applications
in Manipulation Tasks. IEEE Transactions on Robotics 39, 3586–3600 (2023).

30. Zamora-Esquivel, J. & Bayro-Corrochano, E. Robot Object Manipulation Us-
ing Stereoscopic Vision and Conformal Geometric Algebra. Applied Bionics and
Biomechanics 8, 411–428 (2011).

31. Delafosse, L. A New Approach to Screw Theory Using Geometric Algebra https:
//hal.science/hal-04177875v3. Pre-published.

32. Featherstone, R. & Orin, D. Robot Dynamics: Equations and Algorithms in IEEE
International Conference on Robotics and Automation (ICRA) 1 (2000), 826–834.

33. Featherstone, R. Robot Dynamics Algorithms (Springer US, Boston, MA, 1987).
34. Park, F., Bobrow, J. & Ploen, S. A Lie Group Formulation of Robot Dynamics.

The International Journal of Robotics Research 14, 609–618 (Dec. 1995).
35. Ploen, S. & Bobrow, J. An O(n) Geometric Algorithm for Manipulator Forward

Dynamics in International Conference on Advanced Robotics (ICAR) (July 1997),
563–568.

36. Müller, A. Screw and Lie Group Theory in Multibody Dynamics: Recursive Algo-
rithms and Equations of Motion of Tree-Topology Systems. Multibody Syst Dyn
42, 219–248 (Feb. 2018).

https://hal.science/hal-04177875v3
https://hal.science/hal-04177875v3

Forward Dynamics for Kinematic Chains using Geometric Algebra 19

37. Afonso Silva, F. F., José Quiroz-Omaña, J. & Vilhena Adorno, B. Dynamics of
Mobile Manipulators Using Dual Quaternion Algebra. Journal of Mechanisms
and Robotics 14 (Sept. 14, 2022).

38. Bayro-Corrochano, E., Medrano-Hermosillo, J., Osuna-González, G. & Uriostegui-
Legorreta, U. Newton–Euler Modeling and Hamiltonians for Robot Control in the
Geometric Algebra. Robotica 40, 4031–4055 (Nov. 2022).

39. Arellano-Muro, C. A., Osuna-González, G., Castillo-Toledo, B. & Bayro-Corrochano,
E. Newton–Euler Modeling and Control of a Multi-copter Using Motor Algebra.
Adv. Appl. Clifford Algebras 30, 19 (Apr. 2020).

40. Selig, J. M. & Bayro-Corrochano, E. Rigid Body Dynamics Using Clifford Alge-
bra. Advances in Applied Clifford Algebras (ACAA) 20, 141–154 (Mar. 2010).

41. Perwass, C. Geometric Algebra with Applications in Engineering Geometry and
Computing 4 (Springer, Berlin, 2009).

42. Hestenes, D. in Geometric Algebra Computing: In Engineering and Computer
Science (eds Bayro-Corrochano, E. & Scheuermann, G.) 3–33 (Springer, London,
2010).

43. Featherstone, R. Rigid Body Dynamics Algorithms (Springer US, Boston, MA,
2008).

44. Bayro-Corrochano, E. Robot Modeling and Control Using the Motor Algebra Frame-
work in International Workshop on Robot Motion and Control (RoMoCo) (July
2019), 1–8.

45. Ansel, J. et al. PyTorch 2: Faster Machine Learning Through Dynamic Python
Bytecode Transformation and Graph Compilation in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ACM, Apr. 27, 2024), 929–947.

46. Dantam, N. T. Robust and Efficient Forward, Differential, and Inverse Kinematics
Using Dual Quaternions. The International Journal of Robotics Research 40,
1087–1105 (Sept. 2021).

47. Featherstone, R. A Beginner’s Guide to 6-D Vectors (Part 1). IEEE Robot. Au-
tomat. Mag. 17, 83–94 (Sept. 2010).

48. Vaz Jr., J. & Rocha Jr., R. da. An Introduction to Clifford Algebras and Spinors
First edition. 242 pp. (Oxford University Press, Oxford, 2016).

	Recursive Forward Dynamics for Serial Kinematic Chains using Conformal Geometric Algebra

