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Abstract

The convergence of many numerical optimization techniques is highly sensitive to the initial guess provided to the

solver. We propose an approach based on tensor methods to initialize the existing optimization solvers close to global

optima. The approach uses only the definition of the cost function and does not need access to any database of

good solutions. We first transform the cost function, which is a function of task parameters and optimization variables,

into a probability density function. Unlike existing approaches that set the task parameters as constant, we consider

them as another set of random variables and approximate the joint probability distribution of the task parameters and

the optimization variables using a surrogate probability model. For a given task, we then generate samples from the

conditional distribution with respect to the given task parameter and use them as initialization for the optimization solver.

As conditioning and sampling from an arbitrary density function are challenging, we use Tensor Train decomposition

to obtain a surrogate probability model from which we can efficiently obtain the conditional model and the samples.

The method can produce multiple solutions coming from different modes (when they exist) for a given task. We first

evaluate the approach by applying it to various challenging benchmark functions for numerical optimization that are

difficult to solve using gradient-based optimization solvers with a naive initialization, showing that the proposed method

can produce samples close to the global optima and coming from multiple modes. We then demonstrate the generality

of the framework and its relevance to robotics by applying the proposed method to inverse kinematics and motion

planning problems with a 7-DoF manipulator.
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1 Introduction

Numerical optimization has been one of the major tools

for solving a variety of robotics problems including

inverse kinematics, motion planning, control, and system

identification. In this framework, the robotics task to be

accomplished is formulated as the minimization of a cost

function. Although we ideally seek a solution that incurs the

least cost (i.e., global optima), any solution which has a cost

comparable to the global optima is usually sufficient. It is

more essential in robotics applications that a feasible solution

is found fast. In practice, the optimization problems in

robotics involve non-convex cost functions and the existing

optimization techniques often can not quickly find a feasible

solution.

There are stochastic procedures, often called evolutionary

strategies (e.g., CMA-ES (Hansen et al. 2003), Genetic

Algorithm (Whitley 1994), Simulated Annealing (Rutenbar

1989)), that can find the global optima of non-convex

functions. However, such techniques are too slow for most

robotics applications. On the other hand, Newton-type

optimization techniques are fast in general—a desirable

feature for robotics applications. Hence, most of the existing

numerical optimization techniques used in robotics are

variants of Newton-type optimization techniques. However,

such techniques are iterative in nature and require a good

initial guess that determines the solution quality and the time

required to find a solution.

Finding good techniques to initialize a Newton-type

optimizer is an ongoing area of research. A common

approach is to first build a database of optimal solutions in

the offline phase for all possible robotics tasks that are of

interest in a given application (Stolle and Atkeson 2006;

Mansard et al. 2018; Lembono et al. 2020b). Then, to solve

a given task in the online phase, an approximate solution

is retrieved from the database to initialize the optimization

solver. While this approach is simple to implement and

can be applied to a general problem, building a good

database is often challenging, since the solver often cannot

find even a feasible solution for difficult problems without

good initialization. Furthermore, predicting an initial guess

from the database is also challenging when the underlying

optimization problem is multimodal, i.e., when a given

task corresponds to multiple solutions. Standard function

approximation tools such as Gaussian Process Regression

(GPR) (Rasmussen and Williams 2006) and Multilayer

Perceptron (MLP) will average the different modalities,

resulting in a poor prediction.

While the multimodal issue can potentially be overcome

by keeping only one solution mode in the database, it is

not ideal. Firstly, having multimodal solutions available can
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be useful. For example, in many applications, before the

solution is executed on the robot, it needs the approval of

an expert (or the user). In such scenarios, multiple solutions

for the given task are desirable so that the user has enough

options. Secondly, it is often difficult to separate the different

modes, making it impossible to keep only one solution mode

in the database.

In this paper, we propose a novel approach to produce

approximate solutions to a given optimization problem that

we call Tensor Train for Global Optimization (TTGO). This

approach combines several different techniques, mainly:

Tensor Train (TT) decomposition for function approxima-

tion (Oseledets 2011), sampling from TT model (Dolgov

et al. 2020), and numerical optimization using cross approx-

imation technique (Sozykin et al. 2022). In contrast to the

database approach, we firstly transform the cost function

to an unnormalized probability density function and then

approximate the density function using TT decomposi-

tion (Oseledets 2011), a technique from multilinear algebra.

TT models, as shown recently by Dolgov et al. (2020), allow

fast procedures to generate exact samples from the density

model. Furthermore, we extend this approach to generate

samples from a conditioned TT model with controlled pri-

ority for high-density regions (which in turn correspond to

the low-cost regions) that can then be used as approximate

solutions. This approach allows us to obtain a richer set of

solutions, especially for multimodal problems. As it does not

use any gradient information, it is also less susceptible to

getting stuck at local optima.

We consider cost function as a function of the task

parameters (e.g., the desired end effector pose) and the

optimization variables (e.g., the robot configuration for an

inverse kinematics problem or the joint angle trajectory

for motion planning). We can formulate the problem

of minimizing a cost function as maximization of the

corresponding probability density function. Previous work

that attempt to approximate the probability density function

using Variational Inference (e.g., Osa (2020, 2022); Pignat

et al. (2020)) usually treat the task parameters as constant,

so the cost function is only a function of the optimization

variables. In contrast, TTGO allows us to handle varying

task parameters by approximating the joint probability

distribution of the task parameters and the optimization

variables. It exploits the correlation between the task

parameters and the optimization variables (for example, a

slight change in the task parameter usually results in a

small change in the solution) that give the problem a low-

rank structure, enabling the TT model to approximate the

density function compactly. Once the model is trained, we

can condition the model on the specific task parameters, and

then generate samples that are approximate solutions to the

corresponding task. This allows us to generate approximate

solutions quickly during online execution for various tasks.

Our approach neither requires any external database of

good solutions nor a separate regression model to retrieve

approximate solutions from the database. With access only

to the definition of the cost function, we build our database in

the offline phase compactly in TT format in an unsupervised

manner, i.e., without the need of another solver. Due to

its structure, the TT representation provides efficient ways

to retrieve approximate solutions in the online phase in

the order of milliseconds, thus avoiding any need for a

separate regression model for inferring the solution. When

the underlying problem is multimodal, the retrieved solutions

will also come from multiple modes.

In summary, our contributions are as follows:

• We propose a principled approach called TTGO (Ten-

sor Train for Global Optimization) to obtain approx-

imate solutions to a given optimization problem. The

approximate solutions are close to the global optima

(or the good local optima) and can then be used to

initialize gradient-based solvers for further refinement.

• Our approach builds an implicit database in Tensor

Train (TT) format by only using the definition of the

cost function in an unsupervised manner, i.e., without

requiring any gradient information or another solver.

• In the online phase, our approach can produce

approximate solutions very quickly for a given task

(i.e., in the order of milliseconds and linearly scaling

with the dimensionality of the problem) by using

samples from a conditioned TT model.

• We propose a prioritized sampling technique where

we can adjust between sampling from only the high-

density region (to obtain only the best solution) or

from the whole distribution (to obtain a greater variety

of solutions) via a continuous parameter.

• When the underlying optimization problem is multi-

modal, our approach can find multiple solutions that

correspond to a given task.

• The approach is demonstrated on some benchmark

optimization functions to show that it can find global

optima and multiple solutions robustly. We show the

relevance of the approach to robotics problems by

applying it to inverse kinematics and motion planning

problems with a 7-DoF manipulator.

In this paper, we describe TTGO in its generic form

where the TT model is constructed to model varying task

parameters. However, TTGO can also be used when we only

want to solve a single task. In this particular case, the TT

model corresponds to the probability distribution of only the

optimization variables, and the training will require much

less time as compared to the generic form as the variation

of optimization variables. In terms of computation time and

quality of solution, it is similar to evolutionary strategies

such as CMA-ES or GA, but TTGO can offer multiple

solutions.

The paper layout is as follows. In Section 2, we provide

a literature survey on initializing numerical optimization,

multimodal optimization, and tensor methods. Section 3

explains the necessary background on Tensor Train modeling

that is used in this paper. Then, in Section 4, we describe the

TTGO method proposed in this paper. Section 5 presents the

evaluation of our algorithm. We first test it on benchmark

functions for numerical optimization and then apply it

to inverse kinematics and motion planning problems with

manipulators. In Section 6 and 7, we conclude the paper

by discussing how our approach could lead to new ways of

solving a variety of problems in robotics. We also discuss

here the limitations and future work.

Prepared using sagej.cls



3

(a)

Figure 1. Solutions from TTGO for motion planning of a

manipulator from a given initial configuration to a final

configuration. The obtained joint angle trajectories result in

different path for the end effector which are highlighted by

dotted curves in different colors. The multimodality is clearly

visible from these solutions.

2 Related work

This work intersects with several research directions. Firstly,

we target robotics applications that are formulated as

optimization problems. Our framework provides a way to

predict a good initialization for the optimization solver.

At the same time, it also provides a principled way to

obtain multiple solutions of a given optimization problem.

Finally, the proposed framework relies on tensor methods.

We discuss each topic briefly in this section.

2.1 Optimization in Robotics

Many problems in robotics are formulated as optimization

problems. For example, recent work in motion planning

relies on trajectory optimization to plan the robot motion

(e.g., CHOMP (Zucker et al. 2013), STOMP (Kalakr-

ishnan et al. 2011), TrajOpt (Schulman et al. 2014),

GPMP (Mukadam et al. 2018)). Inverse kinematics for

high dimensional robots is usually formulated as nonlinear

least squares optimization (Sugihara 2011) or Quadratic

Programming (QP) (Escande et al. 2010). In control,

optimization-based controllers take the form of Task Space

Inverse Dynamics (TSID) controller formulated as QP prob-

lem (Del Prete and Mansard 2016), or finite horizon optimal

control (Mastalli et al. 2020; Kleff et al. 2021). The opti-

mization framework offers a convenient way to transfer the

high-level requirement (e.g., energy efficiency, maintaining

orientation) to cost functions or constraints. Furthermore, the

availability of off-the-shelf optimization solvers and tools for

automatic gradient computations allow researchers to focus

more on the problem formulation.

However, most of the solvers used in robotics are

local optimizers whose performance depend highly on

the initialization, especially since most robotics problems

are highly non-convex. Even state-of-the-art solvers such

as TrajOpt can fail on a simple problem with poor

initialization (Lembono et al. 2020b). The initialization

determines both the convergence speed, the solution quality,

and the success rate of the solver. This motivates further

research on how to predict good initialization for a given

optimization problem.

2.2 Predicting good initialization

A majority of works that attempt to predict good

initialization rely on a database approach, often called

trajectory library (Stolle and Atkeson 2006) or memory of

motion (Mansard et al. 2018). The idea is to first build

a database of precomputed solutions offline. This database

can be constructed from expert demonstrations (Stolle et al.

2007), using the optimization solver itself (Jetchev and

Toussaint 2009), or using the combination of a global

planner and the optimization solver (Dantec et al. 2021).

Once the database is constructed, we can predict a good

initial guess (i.e., a warm start) for a given task by

formulating it as a regression problem that maps the task

to the initial guess. We can then use the database to train

different function approximation techniques (e.g. k-Nearest

Neighbors, Gaussian Process Regression, Gaussian Mixture

Regression, Neural Network) to learn this map. During

online execution, we query the function approximator to

provide us with the initial guess of a given problem.

While the formulation is easy to implement, especially

since there are many function approximators easily available,

the database approach suffers from two main issues: non-

convexity and multimodality.

Firstly, the database approach requires computing good

solutions to be stored in the database. With the complexity of

general robotics problems, computing the solutions is often

not trivial. The database ideally covers the whole range of

possible tasks, but many tasks are difficult to solve without a

good initialization to the solver. Some work overcome this by

relying on a global planner to provide the good initialization

when building the database Dantec et al. (2021); Lembono

et al. (2020a), but it remains difficult to cover the whole

solution space efficiently.

Let us assume that we can obtain a good database, and

we want to train the function approximators. Many problems

in robotics are multimodal, i.e., there are multiple different

solutions for a given task. Approximating this one-to-many

mapping is difficult for most function approximators, which

tend to average the different modalities resulting in poor

predictions. Some work attempt to handle the multimodal

prediction using mixture models, with Gaussian Mixture

Regression (Lembono et al. 2020b) or Mixture Density

Networks (Brudermüller et al. 2021), but while they perform

better than the standard function approximators, we still

observed some averaging behaviors that result in poor

predictions. One of the reasons is related to the problem of

constructing the database; for the mixture models to perform

well, the database should contain enough data points from

each mode, which is difficult to ensure in practice.

2.3 Multimodal Trajectory Optimization

Related to the problem of building the database above,

most optimization solvers only produce one (locally) optimal

solution. When more solutions are needed, heuristics

approaches such as initialization from a uniform distribution
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(random initialization) or manually-defined waypoints are

usually used. A more principled way transforms the cost into

an unnormalized probability density function (PDF) and uses

probability density estimation techniques, most commonly

using Variational Inference (Osa 2020, 2022; Pignat et al.

2020). This allows us to obtain multimodal solutions when

multiple modes exist or to explore the whole solution space

when the possible solutions are infinite.

The work closest to our approach is SMTO (Osa 2020).

It approximates the unnormalized PDF with a GMM

using Variational Inference by minimizing the forward KL

divergence. Forward KL requires sampling from the target

PDF, which is not feasible in practice. Osa (2020) tries

to solve this issue by relying on importance sampling,

where the samples are generated from a proposal distribution

and their importance is weighted by the ratio between

the proposal density and the target density. It allows

them to obtain multiple solutions to a given optimization

problem. However, the main limitation of the method is the

requirement of a good proposal distribution and the locally

optimal nature of the method. The approximate model can

be optimized only around the generated samples from the

proposal distribution. It means the resulting distribution will

not deviate a lot from the proposal distribution. Especially,

when some modes are not explored by the initial samples,

the approximate model will not be able to cover these

modes after the subsequent iterations. Furthermore, unlike

our approach, it does not allow distribution of computation

into offline and online phase, i.e., all the computation needed

to solve a given task is done in the online phase.

While SMTO (Osa 2020) attempts to obtain multiple

solutions from finitely many modes, Osa (2022) proposes

LSMO that explores an infinite homotopic solution. It

learns latent representations of solutions that can be used

to generate an infinite set of solutions by modifying the

continuous latent variables. Instead of using a GMM, it uses

a neural network parameterized with the latent variables

to approximate the PDF. Again, this approach solves one

optimization problem at a time and the computation time is

high for online operations. Our approach, by distributing the

computation into offline and online phases, allows us to solve

multiple optimization problems approximately in the offline

phase and provide fast approximate solutions in the online

phase. It can also handle the cases with either finite modes

(as in Osa (2020)) or uncountably many solutions (as in Osa

(2022)), as will be shown in Section 5.

2.4 Tensor Methods

Tensor factorization techniques, called as Tensor Net-

works (Orús 2014)) in applied physics, are extensions of

matrix factorization techniques into multidimensional arrays

(i.e., tensors). These techniques approximate a given tensor

compactly using a set of lower-dimensional arrays (called

factors). In addition to the compact representation, they allow

efficient algebraic operations to be performed on them. Pop-

ular tensor factorization techniques include CP/PARAFAC

decomposition, Tucker decomposition, Hierarchical Tucker

decomposition, and Tensor Train (TT), see Sidiropoulos

et al. (2017); Kolda and Bader (2009) for general surveys,

and see Rabanser et al. (2017); Ji et al. (2019) for appli-

cations in machine learning. Tensor factorization techniques

have also been used in robotics to solve control problems that

were previously considered to be intractable (Shetty et al.

2022; Horowitz et al. 2014; Gorodetsky et al. 2015).

Tensor Train (TT) decomposition, used in physics under

the name Matrix Product States (MPS) (Orús 2014), provides

a good balance between expressive power and efficiency

of the representation, and it is equipped with robust

algorithms to find the decomposition (Grasedyck et al.

2013; Oseledets 2011). TT decomposition has been used

to solve problems involving high-dimensional integration

of multivariate functions in Dolgov and Savostyanov

(2020); Shetty et al. (2022). Dolgov et al. (2020) used

it to approximate probability density functions, with a

fast procedure to sample from a probability distribution

represented using the TT format. In machine learning, it has

been used in Stoudenmire and Schwab (2016); Novikov et al.

(2017); Vandereycken and Voorhaar (2022) for supervised

learning. It has also been used for data-driven density

modeling (or generative modeling) in Han et al. (2018);

Stokes and Terilla (2019); Miller et al. (2021); Novikov et al.

(2021).

In Zheltkov and Osinsky (2019); Sozykin et al. (2022), it

has been demonstrated that TT decomposition can be used

for gradient-free optimization and that its performance is

competitive with state-of-art global optimization algorithms

such as CMA-ES and GA. These approaches using

TT decomposition for global optimization are similar to

evolutionary strategies as they solve one optimization

problem at a time (too slow for the use-cases in robotics

applications) and can provide only one solution. We take a

different direction in this paper; we work with the probability

density function (corresponding to the cost function) which

is approximated using a TT decomposition and use efficient

ways to sample from high-density regions of this surrogate

model to approximate the solutions. This allows us to

distribute the computationally intensive part to an offline

phase and solve many optimization problems fast in an

online phase. Moreover, our approach can be used for finding

multiple solutions.

3 Background

In this section, we first describe what a tensor is (Section 3.1)

and how a multivariate function can be approximated using

a tensor (Section 3.2). The size of the tensor increases

exponentially with the number of dimensions, rendering the

naive approach of computing the whole tensor intractable

for high-dimensional functions. We then describe how to

overcome the curse of dimensionality by relying on tensor

factorization techniques that allow efficient computation and

storage of the tensor. We start with the matrix case for an

easier example (Section 3.3 and 3.4) and proceed with the

extension for the higher-order tensor (Section 3.5 and 3.6).

When the target function is an unnormalized probability

density function (PDF), we can construct a probability

distribution from the tensor model (Section 3.7), allowing us

to sample (Section 3.8-3.9) and condition (Section 3.10) on

some of the dimensions.

Prepared using sagej.cls
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3.1 Tensors

A tensor is a multidimensional array and as such, it is a

higher-dimensional generalization of vectors and matrices.

A vector can be considered as a first-order tensor and a

matrix as a second-order tensor. The order of a tensor,

therefore, refers to the number of dimensions (or modes) of

the multidimensional array.

The shape of a d-th order tensor P ∈ R
n1×···×nd is

defined by a tuple of integers n = (n1, . . . , nd). We define

the index set I of the tensor P to be a set I = {i =
(i1, . . . , id), ik ∈ {1, . . . , nk}, k ∈ {1, . . . , d}}. This is used

to uniquely identify the elements of the tensor. We denote the

i-th element of the tensor P by Pi.

A fiber is the higher-order analogue of matrix row and

column which is a vector obtained by fixing every index but

one. Similarly, a slice of a tensor is a matrix obtained by

fixing every index but two.

3.2 Tensors as Discrete Analogue of a

Function

In many applications, tensors arise naturally from the

discretization of multivariate functions defined on a

rectangular domain. Consider a function P : Ωx ⊂ R
d →

R with a rectangular domain Ωx = ×d
k=1Ωxk

, i.e., a

Cartesian product of the intervals of each dimension.

Unless stated otherwise, we discretize the intervals

uniformly. We discretize each bounded interval Ωxk
⊂ R

into nk number of elements. X = {x = (xi1
1 , . . . , xid

d ) :

xik
k ∈ Ωxk

, ik ∈ {1, . . . , nk}} represents the discretization

set and the corresponding index set is defined as IX = {i =
(i1, . . . , id) : ik ∈ {1, . . . , nk}, k ∈ {1, . . . , d}}. We have

a canonical bijective discretization map that maps the

indices to the tensor elements, i.e, X : IX → X defined as

X(i) = (xi1
1 , . . . , xid

d ), ∀i = (i1, . . . , id) ∈ IX . With such

a discretization, we can obtain a tensor P , a discrete

analogue of the function P , by evaluating the function at the

discretization points given by X . i.e., Pi = P (X(i)), i ∈
IX . To simplify the notation, we overload the terminology

and define Px = PX−1(x), ∀x ∈ X . Note that given a

discrete analogue P of a function P , we can approximate the

value P (x) for any x ∈ Ωx by interpolating between certain

nodes of the tensor P .

For a high-dimensional function, naively approximating

it using a tensor is intractable due to the complexity of

both the computation and the storage of the tensor (O(nd)
where n is the maximum number of discretization and d
is the dimension of the function and hence the order of

the tensor). Tensor factorization solves the storage issue by

representing a tensor with its factors that have a smaller

number of elements. While many factorization techniques

still require the computation of the whole tensor, one

particular factorization technique called cross-approximation

allows us to directly compute the factors by using only a

function that can evaluate the value of the tensor given an

index, hence solving the computation issue. The following

sections start by discussing matrix factorization and cross-

approximation for approximating 2D functions to provide

some intuition and then extend it to higher-order tensors.

3.3 Separation of Variables using Matrix

Factorization

Consider a continuous 2D function

P (x1, x2) : Ωx ⊂ R
2 → R. (1)

Let Ωx = Ωx1
× Ωx2

be the rectangular domain formed by

the Cartesian product of intervals so that x1 ∈ Ωx1
and x2 ∈

Ωx2
. We can find a discrete analogue P (which is a matrix

in 2D case) of this function by evaluating the function on a

grid-like discretization of the domain Ωx. Let us discretize

the interval Ωx1
and Ωx2

with n1 and n2 discretization

points respectively. Let (x1
1, . . . , x

n1

1 ) and (x1
2, . . . , x

n2

2 ) be

the corresponding discretization points of the two inter-

vals. The discretization set is then given by X = {x =
(xi1

1 , xi2
2 ) : ik ∈ {1, . . . , nk}, k ∈ {1, 2}} and correspond-

ing index set is IX = {i = (i1, i2) : ik ∈ {1, . . . , nk}, k ∈
{1, 2}}. The corresponding discrete analogue is then given

by the matrix defined as

Pi1,i2 = P (xi1
1 , xi2

2 ), ∀(i1, i2) ∈ IX . (2)

We can find a factorization of the matrix P to represent

it using two factors (P 1,P 2) with P 1 ∈ R
n1×r and P 2 ∈

R
r×n2 so that the elements of P can be approximated using

the factors as

Pi1,i2 ≈ P 1
i1,: P

2
:,i2 . (3)

The matrix factorization can be realized, for example,

using QR, SVD, or LU decompositions. Such a factorization

offers several advantages: firstly, it can be used to represent

the original matrix P compactly if the rank r is low.

Moreover, as we now show, it can be used to represent the

function P in a separable form. First, note that (3) can only

be used to evaluate the function P at the discretized points

in X . For a general x = (x1, x2) ∈ Ωx, we can use linear

interpolation between the rows (or columns) and define the

vector values functions

p1(x1) =
x1 − xi1

1

xi1+1
1 − xi1

1

P 1
i1+1,: +

xi1+1
1 − x1

xi1+1
1 − xi1

1

P 1
i1,:,

p2(x2) =
x2 − xi2

2

xi2+1
2 − xi2

2

P 1
:,i2+1 +

xi2+1
2 − x2

xi2+1
2 − xi2

2

P 2
:,i2 ,

(4)

where xik
k ≤ xk ≤ xik+1

k , p1(x1) : Ωx1
⊂ R→ R

1×r and

p2(x2) : Ωx2
⊂ R→ R

r×1. Note that we could also use

higher-order polynomial interpolation here.

Then, we have the approximation for the function P in a

separable form,

P (x1, x2) ≈ p1(x1)p
2(x2), ∀(x1, x2) ∈ Ωx

=

r
∑

j=1

p1
j (x1)p

2
j (x2).

(5)

Such a factorization of multivariate functions as a

sum of product of univariate functions is an extremely

powerful representation. For example, the integration of the

multivariate function can be computed using integration of

the univariate functions (factors) (Dolgov and Savostyanov

2020; Shetty et al. 2022). If the multivariate function

in hand is a probability density function, such separable
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representation also allows elegant sampling procedures (e.g.,

using conditional distribution sampling (Dolgov et al. 2020))

which will be discussed in Section 3.8.

In many engineering applications, we mostly deal with

functions that have such separable forms. Moreover, we

often have functions characterized by some smoothness

improving separability. The degree of separability of the

function P determines a certain low-rank structure in the

discrete analogue P of the function (often indicated by

the number of sums in the sum of products of univariate

functions representation). This implies that the rank r of the

factors would be low and thus the number of parameters to

represent the factors is low.

The approximation accuracy of (5) also depends on the

number of discretization points and on the decomposition

technique that we use to find the factors. For the case

of 2D functions, a common approach is to use matrix

decomposition techniques such as QR, SVD or LU

decomposition to find the factors. However, a standard

implementation of these algorithms require the whole matrix

P to be computed and stored in memory, and incurs a

computational cost of O(n1n2). Although the resultant

factors would require low memory for storage, if the

discretization is very fine (i.e., n1 and n2 are very large

numbers), computing and storing the matrix P becomes

expensive and inefficient.

A particular factorization technique called the cross

approximation method avoids the above problem. It can

directly find the separable factors without having to compute

and store the whole tensor in memory. In the next section, we

briefly explain the matrix cross approximation technique and

some of its interesting features that are exploited in TTGO.

3.4 Matrix Cross Approximation

Suppose we have a rank-r matrix P ∈ R
n1×n2 . Using

cross-approximation (a.k.a. CUR decomposition or skeleton

decomposition), this matrix can be exactly recovered using

r independent rows (given by the index vector i1 ⊂
{1, . . . , n1}) and r independent columns (given by the index

vector i2 ⊂ {1, . . . , n2}) of the matrix P as

P̂ = P:,i2 P−1
i1,i2

Pi1,:,

provided the intersection matrix Pi1,i2 (called submatrix) is

non-singular. Thus, the matrix P , which has n1n2 elements,

can be reconstructed using only (n1 + n2 − r)r of its

elements (see Figure 2).

Now suppose we have a noisy version of the matrix

P = P̃ +E with ‖E‖ < ǫ and P̃ is of low rank. For a

sufficiently small ǫ, rank(P̃ ) = r so that the matrix P can be

approximated with a lower rank r (i.e., rank(P ) ≈ r). Then,

the choice of the submatrix Pi1,i2 (or index vectors i1, i2)

for the cross approximation requires several considerations.

The maximum volume principle can be used in choosing the

submatrix which states that the submatrix with maximum

absolute value of the determinant is the optimal choice. If

Pi∗
1
,i∗

2
is chosen to have the maximum volume, then by

skeleton decomposition we have an approximation of the

matrix P given by P̂ = P:,i∗
2
P−1

i∗
1
,i∗

2
Pi∗

1
,:. This results in a

quasi-optimal approximation:

‖P − P̂ ‖2 < (r + 1)2 σr+1(P ),

where σr+1(P ) is the (r + 1)-th singular value of P (i.e.,

the approximation error in the best rank r approximation in

the spectral norm). Thus, we have an upper bound on the

error incurred in the approximation which is slightly higher

than the best rank r approximation (Eckart–Young–Mirsky

theorem).

Finding the maximum volume submatrix is, however,

an NP-hard problem. However, many heuristic algorithms

that work well exist in practice by using a submatrix with

a sufficiently large volume, trading off the approximation

accuracy for the computation speed. One of the widely

used methods is the MAXVOL algorithm (Goreinov et al.

2010) which can provide, given a tall matrix P ∈ R
r×n2

(or R
n1×r), the maximum volume submatrix Pi∗

1
,i∗

2
∈

R
r×r. The cross approximation algorithm uses the MAXVOL

algorithm in an iterative fashion to find the skeleton

decomposition as follows:

1. Input: P ∈ R
n1×n2 , the approximation rank r for the

skeleton decomposition.

2. Find the columns index set i∗2 and the row index set i∗1
corresponding to the maximum volume submatrix.

2.1 Randomly choose r columns i2 of the matrix P

and repeat the following until convergence:

• Use MAXVOL to find r row indices i1 so

that Pi1,i2 is the submatrix with maximum

volume in P:,i2 .

• Use MAXVOL to find r column indices i2 so

that Pi1,i2 is the submatrix with maximum

volume in Pi1,:.

3. Output: Using the column index set i∗2 and the row-

index set i∗1 corresponding to the maximum volume

submatrix, we have the skeleton decomposition P̂ ≈
P:,i∗

2
P−1

i∗
1
,i∗

2
Pi∗

1
,:.

In the above algorithm, during the iterations the matrices

P:,i2 (or Pi1,:) might be non-singular. Thus, a more

practical implementation uses the QR decomposition of

these matrices and the MAXVOL algorithm is applied

to the corresponding Q factor to find the columns (or

rows) of the submatrix. Furthermore, instead of a random

choice in step (2.1), one can choose the r columns from

the multinomial distribution given by p(i2) =
‖P:,i2

‖

‖P ‖ , i2 ∈
{1, . . . , n1} without sample replacement.

Note that, in the above algorithm, the input is only a

function to evaluate the elements of the matrix P (i.e., we do

not need the whole matrix P in computer memory). Some

features of cross approximation algorithms are highlighted

below:

• The factors in a cross approximation method consist

of elements of the actual data (rows and columns)

of the original matrix and hence it improves

interpretability. For example, SVD does projection

onto the eigenvectors which could be abstract, whereas

cross approximation does projection onto the vectors

formed by rows and columns of the actual data of the

matrix which are more meaningful.

• Since cross approximation algorithms follow the

maximum volume principle, the factors are composed

of high magnitude elements of the original matrix
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Figure 2. For a given matrix P (top-left), suppose we know r

independent columns indexed by i2 = (i2,1, . . . , i2,r), i.e.,

P:,i2 ∈ R
n1×r and r independent rows indexed by

i1 = (i1,1, . . . , i1,r), i.e., Pi1,: ∈ R
r×n2 , with their intersection

Pi1,i2 ∈ R
r×r being nonsingular. Then, by skeleton

decomposition we have P̂ = P:,i2P
−1

i1,i2
Pi1,:. If rank(P ) = r,

then P̂ = P (bottom row). For r < rank(P ) we obtain a

quasi-optimal approximation, P̂ ≈ P (middle row). The right

figures show the rows and columns selected from the original

matrix by the cross approximation algorithm to find the skeleton

decomposition.

with high probability (Goreinov et al. 2010). This

is very useful for TTGO as we are interested in

finding the maxima from a tensor (discrete analogue

of a probability density function) and the skeleton

decomposition preserves this information.

• Cross approximation algorithms directly find the

factors without computing and storing the whole

matrix.

3.5 Tensor Train Decomposition

Similar to matrix factorization, tensor factorization allows

us to represent a tensor by its factors. Among the popular

factorization techniques, we concentrate in this work on

the Tensor Train (TT) decomposition. TT decomposition

encodes a given tensor compactly using a set of third-

order tensors called cores. A d-th order tensor P ∈
R

n1×···×nd in TT format is represented using a tuple of

d third-order tensors (P1, . . . ,Pd). The dimension of the

cores are given as P
1 ∈ R

1×n1×r1 ,Pk ∈ R
rk−1×nk×rk ,

k ∈ {2, . . . , d−1}, and P
d ∈ R

rd−1×nd×1 with r0 = rd =
1. As shown in Figure 3, the i-th element of the tensor in this

format, with i ∈ I = {(i1, . . . , id) : ik ∈ {1, . . . , nk}, k ∈
{1, . . . , d}}, is simply given by multiplying matrix slices

from the cores:

Pi = P
1
:,i1,:P

2
:,i2,: · · ·P

d
:,id,:

, (6)

where P
k
:,ik,:
∈ R

rk−1×rk represents the ik-th frontal slice

(a matrix) of the third-order tensor Pk. The dimensions of

the cores are such that the above matrix multiplication yields

a scalar. The TT-rank of the tensor in TT representation

is then defined as the tuple r = (r1, r2, . . . , rd−1). We

call r = max (r1, . . . , rd−1) as the maximal rank. For any

given tensor, there always exists a TT decomposition (6)

(Oseledets 2011).

Similarly to (5), we can also obtain a continuous

approximation of the function P as

P (x1, . . . , xd) ≈ P 1(x1) · · ·P d(xd), (7)

where P k(xk), k ∈ {1, . . . , d} is obtained by interpolating

each of the core, analogously to the matrix example in (4)

(see Appendix A.1 for more detail). We overload the

terminology again to define the continuous TT representation

as

Px = P (x1, . . . , xd), ∀x ∈ Ωx.

Due to its structure, the TT representation offers

several advantages for storage and computation. Let n =
max(n1, . . . , nd). Then, the number of elements in the TT

representation is O(ndr2) as compared to O(nd) elements

in the original tensor. For a small r and a large d,

the representation is thus very efficient. As explained in

Section 3.3, the existence of a low-rank structure (i.e., a small

r) of a given tensor is closely related to the separability of the

underlying multivariate function. Although separability of

functions is not a very well understood concept, it is known

that smoothness and symmetry of functions often induces

better separability of the functions. By better, we mean

fewer low-dimensional functions in the sum of products

representation. The degree of smoothness can be formally

defined using the properties of higher-order derivatives,

however, roughly speaking, it implies the degree of variation

of the function across its domain. For example, a probability

density function in the form of a Gaussian Mixture Model

(GMM) is considered to become less smooth as the number

of mixture components (i.e., multi-modality) increases or the

variance of the component Gaussians decreases (i.e., sharper

peaks). More formally, .

3.6 TT-Cross

The popular methods to find the TT decomposition of a

tensor are TT-SVD (Oseledets 2011), TT-DMRG (Dolgov

and Savostyanov 2020), and TT-cross (Savostyanov and

Oseledets 2011). TT-SVD and TT-DMRG, like matrix SVD,

require the full tensor in memory to find the decomposition,

and hence they are infeasible for higher-order tensors.

TT-cross approximation (TT-cross) is an extension of the

cross approximation technique explained in Section 3.4 for

obtaining the TT decomposition of a tensor. We refer the

readers to Appendix A.2 for more detail on how the matrix

cross-approximation algorithm described in Section 3.4 can

be adapted to find the TT decomposition using TT-cross. It is

appealing for many practical problems as it approximates the

given tensor with a controlled accuracy, by evaluating only a

small number of its elements and without having to compute

and store the entire tensor in the memory. The method needs

to compute only certain fibers of the original tensor at a time

and hence works in a black-box fashion.

Suppose we have a function P and its discrete analogue P

(a tensor). Given a maximal TT-rank r for the approximation,

TT-cross returns an approximate tensor in TT format P̂ =
TT-cross(P, r) to the tensor P by querying only a portion

of its elements (O(ndr2) evaluations instead of O(nd)).
This is very efficient if the TT-rank r of the tensor is low,
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Figure 3. TT decomposition is an extension of matrix decomposition techniques to higher dimensional arrays. With a matrix

decomposition, we can access an element of the original matrix by multiplying appropriate rows or columns of the factors. Similarly,

an element of a tensor in TT format can be accessed by multiplying the selected slices (matrices represented in red color) of the

core tensors (factors). The figure depicts examples for a 2nd order, 3rd order, and a 4th order tensor.

which is typically the case in many engineering applications,

including robotics. Thus, TT-cross avoids the need to

compute and store explicitly the original tensor, which may

not be possible for higher-order tensors. It only requires

computing the function P that can return the elements of the

tensor P at various query points, i.e., the fibers of the tensor

P .

3.7 TT Distribution

Suppose we use the tensor P in TT format to approximate

an unnormalized probability density function P within the

discretization setX of the domain Ωx. We can then construct

the corresponding probability distribution that we call TT

distribution,

Pr(x) =
|Px|
Z

, x ∈ Ωx, (8)

where Z is the corresponding normalization constant.* Due

to the separable structure of the TT model, we can get the

exact samples from the TT distribution in an efficient manner

without requiring to compute the normalization factor Z. In

the next section, we provide details about sampling from

the above distribution for the discrete case x ∈ X which

is adapted from a continuous version introduced in Dolgov

et al. (2020).

3.8 Sampling from TT distribution

Consider a probability distribution given by (8). For the

simplicity of the presentation, we assume Z = 1 as we

will not require the normalization constant to be known for

sampling from the above distribution. The distribution can be

expressed as a product of conditional distributions

Pr(x1, . . . , xd) = Pr1(x1)Pr2(x2|x1) · · ·
· · · Prd(xd|x1, . . . , xd−1),

where

Prk(xk|x1, . . . , xk−1) =
σk(x1, . . . , xk)

σk−1(x1, . . . , xk−1)

is the conditional distribution defined using the marginals

σk(x1, . . . , xk) =
∑

xk+1

· · ·
∑

xd

Pr(x1, . . . , xd).

Let σ0 = 1. Now, using the above definitions, we

can generate samples x ∼ Pr by sampling from each

of the conditional distributions in turn. Each conditional

distribution is a function of only one variable, and in the

discrete case it is a multinomial distribution, with

for k = 1, . . . , d do

xk ≈ Prk(xk|x1, . . . , xk−1)
end for

However, this is computationally intensive as sampling

xk requires the conditional distribution Prk which in

turn requires the evaluation of the summation over

*Alternatively, we could also define the TT distribution to be Pr(x) =
P

2
x

Z
. All the techniques, such as conditional sampling and prioritized

sampling, used in this paper can also be adapted to this distribution.

However, for simplicity of presentation, we do not consider it here.
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Algorithm 1 TT-CD Sampling with Sample Prioritization

Input: TT Blocks P = (P1, . . . ,Pd) corresponding to the

distribution Pr, sample priority α ∈ (0, 1)
Output: N α−prioritized samples {(xl

1, . . . , x
l
d)}Nl=1 from

the distribution Pr

1: π̂d+1 ← 1
2: for k ← d to 2 do

3: π̂k = (
∑

xk
P

k
:,xk,:

)π̂k+1

4: end for

5: Φ1 ← 1 ∈ R
N×1

6: for k ← 1 to d do

7: πk(xk) = P
k
:,xk,:

π̂k+1, ∀xk

8: for l = 1, . . . , N do

9: pk(xk) = |Φk(l, :)πk(xk)|, ∀xk

10: pk ← pk

maxpk

11: pk ← p
1

1−α+ǫ

k , where ǫ is positive and ǫ ≈ 0

12: pk(xk)← pk(xk)∑
xk

pk(xk)
, ∀xk (normalization)

13: Sample xl
k from the multinomial distribution pk

14: Φk+1(l, :) = Φk(l, :)P
k
:,xl

k
,:

15: end for

16: end for

several variables to find the marginal σk. It results in a

computational cost that grows exponentially with the number

of dimensions. This is where the TT format provides a nice

solution by relying on the separability of the function. Let P

be the discrete analogue of the function Pr (or P as Z = 1),

a tensor in TT format, with the discretization set X . Let the

TT model be given by the cores (P1, . . . ,Pd), then we have

σk(x1, . . . , xk) =
∑

xk+1

· · ·
∑

xd

Pr(x),

≈
∑

xk+1

· · ·
∑

xd

|Px|,

=
∑

xk+1

· · ·
∑

xd

|P1
:,x1,:

| · · · |Pk
:,xk,:

||Pk+1
:,xk+1,:

| · · · |Pd
:,xd,:

|,

= |P1
:,x1,:

| · · · |Pk
:,xk,:

|
(

∑

xk+1

|Pk+1
:,xk+1,:

|
)

· · ·
(

∑

xd

|Pd
:,xd,:

|
)

,

(9)

where
∑

xk
|Pk

:,xk,:
| is the summation of all the matrix slices

(absolute values) of the third-order tensor (cores of TT).

Thus, the TT-format reduces the complicated summation

into one-dimensional summations. Noting that the same

summation terms appear over several conditionals Prk, we

can have the an algorithm, i.e., Tensor Train Conditional

Distribution (TT-CD) sampling (Dolgov et al. 2020), to

efficiently get the samples from Pr.

3.9 Prioritized Sampling

The previous section explains how to sample from a TT

distribution. In some applications, however, we do not

necessarily want to sample from the whole distribution, but

instead to focus on obtaining samples from the high-density

region (e.g., when we only want to find the modes of the

distribution). It is possible to adjust the previous sampling

procedure to allow prioritized sampling. Namely, we can

choose a hyperparameter α ∈ (0, 1) to prioritize samples

from higher-density regions in the distribution Pr(x) given

by (3.7). α = 0 leads to generating exact samples from

the true TT distribution whereas α = 1 leads to sampling

from regions closer to the mode of the distribution. Values

of α higher than 0 reduce the likelihood of generating

samples from low-density regions of the TT distribution.

This algorithtm is described in Algorithm 1. The prioritized

sampling can be relaxed by setting α = 0 in the algorithm,

resulting in the standard sampling procedure described

in Section 3.8. Note that the algorithm allows parallel

implementation to quickly generate a large number of

samples.

3.10 Conditional TT Model and Distribution

Suppose we want to fix a subset of variables in x

and find the corresponding conditional distribution of the

remaining variables. Without loss of generality, let x be

segmented as x = (x1,x2) ∈ Ωx = Ωx1
× Ωx2

with x1 ∈
Ωx1
⊂ R

d1 , x2 ∈ Ωx2
⊂ R

d2 . i.e., x1 corresponds to the

first d1 variables in x. We are interested in finding the

conditional distribution Pr(x2|x1) of the TT distribution

given in (8).

Suppose x1 takes a particular value xt. We can obtain

Pr(x2|x1 = xt) by defining a conditional TT model Px1=xt

using TT model P as

P
xt

x2
= P(xt,x2)∀x2 ∈ Ωx2

.

In other words, the TT cores of Px1=xt are then given by

(Pxt)
k
=

{

P
k
:,xtk

,:, k ∈ {1, . . . , d1}
P

k, k ∈ {d1 + 1, d1 + d2}
(10)

Given the above-defined conditional TT model, we can

obtain the conditional distribution as

Pr(x2|x1 = xt) =
|Pxt

x2
|

Z1
, ∀x2 ∈ Ωx2

. (11)

Given x1 = xt, we can sample x2 from this distribution

using Algorithm 1 with the conditional TT model Px1=xt .

4 Methodology

4.1 Problem Definition

Cost functions in a robotics application often depend on

two kinds of variables: task parameters that are constant

for a given optimization problem and decision variables

that are the variables being optimized (i.e., optimization

variables). The task parameters parameterize the possible

tasks that could be encountered in a given application by the

robot. For example, in an inverse kinematics (IK) problem

with obstacles, the task parameters can be the desired end

effector pose and the decision variables can be the robot

configuration, i.e., the joint angles. In most applications, we

can anticipate the possible range of the task parameters (e.g.,

the robot workspace for IK). This means that ideally, we can

solve the optimization problem many times for the whole

range of task parameters offline, and use this experience to

speed up the online optimization for a new task.

We further note that the cost function in robotics is often a

piecewise smooth function that imposes a certain structure
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(i.e., low-rank structure as explained in Section 3) among

the variables of the cost function. For example, similarity

in task parameters corresponds to a certain similarity in the

solutions to the optimization problem. Furthermore, there

can be strong correlations between the decision variables due

to the cost function (e.g., the movements of the manipulator

joints are correlated when it needs to maintain the same

orientation). Capturing this structure will enable us to model

the relation among the variables compactly instead of relying

on database approaches that store every single data point. To

the best of our knowledge, such a structure has not been well

exploited so far, despite the fact that it exists in many robotic

applications.

In this article, we propose a framework that exploits

such a structure to gather experience in the offline phase

for faster optimization in the online phase. As discussed in

Section 2, the common approach using database and function

approximators does not work well when the optimization

problems are highly non-convex with many poor local

optima and the solutions are multimodal. Our framework

provides a principled solution to these two problems. The

following section presents the approach in detail.

4.2 Overview of the Proposed Approach

Given an optimization problem, our Tensor Train for Global

Optimization (TTGO) framework predicts approximate

solution(s) that can be refined using an optimization solver.

The refinement can be done using standard Newton-

type solvers such as SLSQP or L-BFGS-B, so we focus

our discussion on the problem of predicting a good

approximation of the solution.

Our approach first transforms the cost function into

an unnormalized Probability Density Function (PDF) and

approximates it using a surrogate probability model, namely

a TT distribution. We view the cost function as a function

of the optimization variables and the task parameters

which parameterize the optimization problem. Hence, the

surrogate model approximates the joint distribution of the

task parameters and the optimization variables. During

online execution, when the user specifies a task parameter,

we condition this surrogate model on the corresponding

task parameter. Then, we can sample from this conditional

distribution to obtain approximate solutions corresponding

to the specified task parameters. When the underlying PDF

is multimodal, the samples will also come from the multiple

modes. These samples are good candidates for the solutions.

We can then select the best sample(s) by evaluating the

corresponding cost functions and take the sample(s) with the

lowest cost (when multiple solutions are needed, we can keep

several best samples). In the second stage, these proposals

for the optima are refined using a suitable optimization

technique, e.g. Newton-type solvers if the objective function

is differentiable.

The feasibility of such an approach depends on the

properties of the surrogate probability model, namely:

• The surrogate probability model should be able to

approximate a wide range of probability density

functions we encounter in robotics by using only the

cost function definition.

• Conditioning and sampling from the surrogate

probability model determine the speed of the online

execution and hence it should be fast.

The first requirement comes from the fact that we do not

usually have access to the samples from the true probability

distribution; we only have the definition of the density

function (corresponding to the cost function) that can return

the value of the function at a query point.

In our approach, we propose to use the TT distribution

(Section 3.7) as the surrogate model that satisfies the

above requirements. The TT model defining the TT

distribution corresponds to the discrete analogue of the

given unnormalized PDF, and it can be obtained efficiently

using TT-Cross algorithm (Section 3.6). The efficiency is in

terms of the number of evaluations of the target function

to be modeled, the memory requirement, and the speed

of computation. The resultant TT distribution allows fast

sampling procedures (see Section 3.8). Since we use the

samples from the TT distribution as the solution candidates,

we are often mainly interested in samples from the high-

density regions (i.e., the low-cost regions). This can be

accomplished using the prioritized sampling procedures for

TT distribution (see Section 3.9).

In the following section, we provide the mathematical

formulation of the approach.

4.3 Mathematical Formulation

Let x1 ∈ Ωx1
be the task parameter, x2 ∈ Ωx2

be the

decision variables and x = (x1,x2). Let C(x1,x2) be a

nonegative cost function. Given the task parameter x1 = xt,

we consider the continuous optimization problem in which

we want to minimize C(xt,x2) w.r.t x2:

x∗
2 =argmin

x2

C(x1,x2)

s.t. x1 = xt,

x2 ∈ Ωx2
.

(12)

We assume that Ωx1
∈ R

d1 , Ωx2
∈ R

d2 are both

rectangular domain and let Ωx = Ωx1
× Ωx2

⊂ R
d with

d = d1 + d2. TTGO decomposes the procedure to solve such

an optimization problem into two steps:

1. Predict an approximate solution x̂∗
2 that corresponds to

the given x1 = xt, then

2. Improve the solution x̂∗
2 using a local search (e.g.,

Newton type optimization) to obtain the optimal

solution x∗
2.

To find the approximate solution(s) x̂∗
2, we first convert

the above optimization problem of minimizing a cost

function into maximizing an unnormalized probability

density function P (x1,x2) using a monotonically non-

increasing transformation,

x∗

2
=argmax

x2

P (xt,x2)

s.t. x1 = xt,

x2 ∈ Ωx2
.

(13)

For example, we can define P (x) = e−βC(x) with β > 0.

Without loss of generality, in the remainder of the paper we
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consider optimization problems to be of type (13) with the

objective function being the density function.

In this probabilistic view, the solution x∗
2 corresponds

to the mode, i.e., the point with the highest density, of

the conditional distribution P (x2|x1 = xt). In general,

however, we do not have an analytical formula of P (x2|x1 =
xt), and finding the mode is as difficult as solving the

optimization problem in (12). TTGO overcomes this issue

by first approximating the unnormalized PDF P (x1,x2)
using a TT model as the surrogate model to obtain the

joint distribution Pr(x1,x2). Given the task x1 = xt, we

condition the TT model to obtain the conditional distribution

Pr(x2|x1 = xt). Finally, the TT model allows us to sample

easily from its distribution to produce the approximate

solution(s) x̂∗
2.

4.3.1 Approximating the unnormalized PDF using TT

model: As described in Section 3, a TT model can

approximate a multivariate function as its discrete analogue,

i.e., by discretizing the function on a rectangular domain and

storing the value in a tensor. For a high-dimensional function,

however, it is intractable to construct and store the whole

tensor. To avoid the curse of dimensionality, we rely on TT

decomposition that allows us to store the tensor in a very

compact form as TT cores. We use the TT-cross algorithm

that allows us to compute the TT cores without having to

construct the whole tensor, reducing the complexity of both

the storage and the computation significantly.

Given the unnormalized PDF P (x1,x2), TTGO uses

the TT-Cross algorithm (see Section 3.6) to compute its

discrete analogue approximation, i.e., P , in the TT format.

The construction of P only requires the computation of

P (x1,x2) at selected points (x1,x2) in the rectangular

domain. Instead of computing every single possible value of

P in the discretized domain (O(nd)), the TT-Cross algorithm

only requires O(ndr2) cost function evaluations, where n is

the maximum number of discretization and r is the maximum

rank of the approximate tensor. More details on how to

approximate the function using the TT decomposition are

described in Section 3.

The tensor model P is an approximation of the

unnormalized PDF. We can construct the corresponding

normalized TT distribution Pr(x) with (8), which requires

the normalization constant as per the definition. However,

as described in Section 3.8, we can sample from the TT

distribution without calculating the normalization constant.

Hence, in practice we can generate the samples by working

directly with the unnormalized density P .

4.3.2 Conditioning TT Model: After approximating the

joint distribution, we can condition it on the given task. Given

the task parameter x1 = xt ∈ Ωx1
, we first condition the

TT model P to obtain P
xt . We then use it to construct the

conditional TT distribution Pr(x2|x1 = xt) as described in

Section 3.10. This is the desired surrogate probability model

for P (x2|x1 = xt).

4.3.3 Sampling: As described in Section 3.8, it is possible

to sample efficiently from a TT distribution. The sampling

procedure consists of a repeated sampling of each dimension

separately from a multinomial distribution, as described in

Algorithm 1. Furthermore, a sampling parameter α ∈ (0, 1)
can be chosen to the adjust the sampling priority (see

Section 3.9). When α = 0, the samples will be generated

from the whole distribution (i.e., exact sampling), including

from the low-density region (albeit with a lower probability).

Higher α will focus the sampling around the area with

higher density. This is ideal for robotics applications, as

some applications require a very good initial solution for fast

optimization (in that case, α is set near to one to obtain the

best possible solution) while some others prefer the diversity

of the solutions (by setting a small α). As the sampling

procedures can be done in parallel, we can generate many

samples and select the best few samples according to their

cost function values as the solution candidates x̂∗
2.

4.4 TTGO Algorithm

1. Training Phase (Offline):

1.1 Given:

• Cost function C(x1,x2),
• Rectangular domain Ωx = Ωx1

× Ωx2

1.2 Transform the cost function into an unnormal-

ized PDF P (x1,x2).
1.3 Discretize the domain Ωx into X = X1 ×X2.

1.4 Using TT-Cross, construct the TT-Model P as

the discrete analogue of P (x) with discretization

set X .

2. Inference Phase (Online):

2.1 Given: The task-parameter x1 = xt ∈ Ωx1
, the

desired number of solutions K.

2.2 Construct the conditional TT Model Pxt from

P (see Section 3.10).

2.3 Generate N samples {xl
2}Nl=1 with the sampling

parameter α ∈ (0, 1) from the TT distribution

Pr(x2|x1 = xt) =
|Pxt

x2
|

Z (Algorithm 1).

2.4 Evaluate the cost function at these samples and

choose the best-K samples as approximation for

the optima {x̂∗l

2 }Kl=1.

2.5 Fine-tune the approximate solutions using

gradient-based approaches on C(xt,x2) to

obtain the optima {x∗l

2 }Kl=1.

5 Experiments

In this section, we evaluate the performance of the proposed

algorithm with several applications.* We first apply it

to some benchmark functions for numerical optimization

solvers to show the capability of TTGO to find global

optima and multiple solutions consistently. We then apply

it to robotics applications, i.e., numerical inverse kinematics

and motion planning of manipulators. Besides qualitatively

observing the solutions, we also perform quantitative

analyses to evaluate the quality of the approximate solutions

produced by TTGO. We consider three different metrics:

• ci, the initial cost value of the approximate solutions.

• cf, the cost value after refinement.

• Success, the percentage of samples that converge to a

good solution, i.e., with the cost value below a given

threshold.

*A PyTorch-based implementation of TTGO and the accompanying

videos are available at https://sites.google.com/view/ttgo/home
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For comparison, we use random samples from the uniform

distribution across the whole domain to initialize the solver.

We also use TTGO with different values of α to observe

the effect of prioritized sampling. We then evaluate the

performance as follows. First, we generate 100 random test

cases within the task space. For each test case, we generate N
samples and take the best sample (in terms of the initial cost

value) as the approximate solution. We use the number of

samples N ranging from 1 to 1000 and generate the samples

using both methods (TT and uniform distribution). We use

the SLSQP solver to optimize this sample according to the

given cost function. Finally, we evaluate the three metrics

on this sample, i.e., the initial cost ci, the final cost after

refinement cf , and the convergence status. We then compute

the average performance of both methods across the whole

test cases. The results for the robotics applications can be

found in Table 1-3 and will be explained in the corresponding

sections.

5.1 Benchmark functions

We apply our framework to extended versions of some

benchmark functions for numerical optimization techniques,

i.e., Rosenbrock and Himmelblau functions. They are known

to be notoriously difficult for gradient-based optimization

techniques to find the global optima, which could be more

than one. Some of the functions also have some parameters

that can change the shape of the functions. We consider

these parameters as the task parameters, hence making the

problem even more challenging. The benchmark functions

are considered as the cost functions and we transform them

to obtain a suitable probability density function. In addition,

we also include a sinusoidal function to show that TTGO

can handle a cost function with an infinite number of global

optima, and a mixture of Gaussians to test the performance

of TTGO on a high-dimensional multimodal function.

Furthermore, we also evaluate the prioritized sampling

approach proposed in this article. We show how the sampling

parameter α influences the obtained solutions. When α is

small, the generated samples cover a wide region around

many different local optima. When α is close to one, the

obtained samples are observed to be very close to the global

optima. All the results can be observed in Figure 4- 9, where

the samples from the TT distribution (without any refinement

by another solver) are shown as blue dots. The contour plot

corresponds to the cost function in Figure 4-8 and the density

function in Figure 9, where the dark region is the region with

low cost (i.e., high density).

In all of the test cases, we observe that the solutions

proposed by TTGO are close to the actual optima and

that the refinement using SLSQP quickly leads to global

optima consistently. When there exist multiple solutions, we

are also able to find them. Note that the task parameters

influence the locations of the global optima, and TTGO can

adapt accordingly by conditioning the model on the given

task parameters. In all of the following cases, we choose

a uniform discretization of the domain with the number

of discretization points nk = 500 set for each variable to

construct the TT model.

Except for the sinusoidal function, uniform sampling

requires a large number of samples to reach the global

optima. For the mixture of Gaussians case, it fails most of

the time to get the global optima even after the refinement

step. In contrast, we could consistently get the optima using

TTGO with few samples. In fact, by using α close to 1, we

could find the global optima with just one sample from the

TT distribution.

5.1.1 Sinusoidal Function:

C(x) = 1− 0.5(1 + sin(4π||x||/
√
d))

P (x) = 1− C(x),

where x = x2 = (y1, y2), ,Ωx2
= [−2, 2]2 with no task

parameters. For this function, finding the optima is not

a difficult problem. However, as the cost function has

uncountably many global optima (on the circles separated

by one period of the sinusoidal function), we use it to

test the approximation power of TT-model and check the

multimodality in the TTGO samples. As we can see in

Figure 4 for d = 2, the samples from the TT model mainly

come from the modes corresponding to the optima and the

nearby region with cost values comparable to the optimal

cost. At α = 0, we can still observe a few samples in the

white area (low density region), and as we increase α, the

samples become more concentrated in the dark area, i.e.,

high-density region.

5.1.2 Rosenbrock Function:

C(a, b, y1, . . . , yd1
) =

d2/2
∑

k=1

(y2k−1 − a)2 + b(y2k−1 − y22k)
2

P (x) = exp(−C(x)2),

where x = (x1,x2), x1 = (a, b), x2 = (y1, . . . , yd2
),

Ωx1
= [−1.5, 1.5]× [50, 150], Ωx2

= [−2, 2]d2 . The

function is similar to a banana distribution which is

quite difficult to approximate. The cost function C(x)
for a specified (a, b) has a unique global minima at

(a, a2, . . . , a, a2). However, if we do not initialize the

solution from the parabolic valley area (see Figure 5), a

gradient-based solver will have difficulty in converging

to the global optima quickly. We can see from Figure 5

that TTGO samples are concentrated around this region,

allowing most of them to reach the global optima after

refinement. In fact, by increasing the α, the TTGO samples

are already very close to the global optima (as shown in red).

Figure 6 shows how the task parameters x1 = (a, b)
change the shape of the function with respect to x2 and

consequently the location of the global optima. After the

offline training, we condition our TT model on these task

parameters and sample from the conditional distribution

Pr(x2|x1 = (a, b)). We can see in this figure that TTGO can

adapt to the new task parameters easily, as the samples are

concentrated around the new global optima.

We also test TTGO performance on Rosenbrock functions

for d2 up to 30 and find that it can find the global optima

consistently. We show in the figures the results for the 2D

case, which are easier to visualize.

5.1.3 Himmelblau’s function:

C(a, b, y1, y2) = (y21 + y2 − a)2 + (y1 + y22 − b)2

P (x) = exp(−C(x)2),
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where x = (x1,x2), x1 = (a, b), x2 = (y1, y2), P (x) =
exp(−C(x)), Ωx1

= [0, 15]2, Ωx2
= [−5, 5]2. The cost

function C(a, b, y1, y2) for a given (a, b) has multiple

distinct global optima and many local optima. The samples

from the TT distribution Pr(x2|x1 = (a, b)) are shown in

Figure 7–8 for different choice of task parameters and the

prioritized sampling parameters α. We can see that TTGO

can generate samples from all of the modes consistently

according to the task parameters.

5.1.4 Mixture of Gaussians:

P (x) =
J
∑

j=1

αj exp(−βj ||x− aj ||2),

We use an unnormalized mixture of Gaussian functions to

define the probability function P (x) to test our framework

for high-dimensional multimodal functions. For verification,

we design the mixture components so that we know the

global optima a priori by carefully choosing the centers,

mixture coefficients and variances. We test it for various

values for the number of mixtures J , β ∈ [1, 1000] and the

dimension d ∈ (2, . . . , 50) of x. We choose x = (x1,x2)
with Ωx = [−2, 2]d for various choices of values and

dimension of x. As TTGO does not differentiate between

task parameters and optimization variables internally, we

could consider various possibilities to segment x into

(x1,x2) as task parameters and decision variables. We

tested this problem for d < 100, and our approach could

consistently find the optima with less than 100 samples

from the TT-model, for arbitrary choice of variables

being conditioned as task parameters. In contrast, finding

the optima using Newton-type optimization with random

initialization is highly unlikely for βj > 1 and d > 10,

even after considering millions of samples from uniform

distribution for initialization.

Figure 9 shows one particular example with J = 10,

βj = 175 and d = 50. To visualize, we choose x1 ∈ R
d−2

and x2 ∈ R
2, and we generate 1000 samples from the

conditional TT distribution Pr(x2|x1). With low values of

α, the samples are generated around all the different modes,

but as α is increased, the samples become more concentrated

around the mode with the highest probability.

5.2 Inverse Kinematics

We consider here the optimization formulation of Inverse

Kinematics (IK), i.e., numerical IK instead of analytical one.

The task parameters x1 then correspond to the desired end

effector pose, while the decision variables x2 are the joint

angles. We use approximately n2 = 50 discretization points

for each of the joint angles (∼ 5°) and approximately n1 =
200 discretization points (∼ 0.5cm) for each task parameter.

Ωx1
⊂ R

3 is the rectangular space that includes the robot

workspace. Ωx2
= ×d2

k=1[θmink
, θmaxk

], Ωx2
⊂ R

d2 where

[θmink
, θmaxk

] represents the joint angle limits for the k-th

joint.

We consider two IK problems: 6-DoF IK to clearly

demonstrate the multimodal solutions and 7-DoF IK with

obstacle cost to consider the infinite solution space. In both

cases, we transform the cost function into a density function

as P (x) = exp(−C(x)2).

5.2.1 Inverse Kinematics for 6-DoF Robot: A 6-DoF

robot has a finite number of joint angle configurations that

correspond to a given end effector pose. In this section, we

consider the 6-DoF Universal Robot that can have up to 8

IK solutions. While there is an analytical solution for such

robots, it is a nice case study to illustrate the capability of

TTGO to approximate multimodal distributions in a robotics

problem where the modes are very distinct from one another.

We constrain the end effector orientation to a specific value

(i.e., facing upward without any free axis of rotation), and

set the end effector position as the task parameter. Hence,

x1 ∈ Ωx1
⊂ R

3 while x2 ∈ Ωx2
⊂ R

6, so d = 9, where

Ωx1
is the rectangular domain enclosing the workspace of

the manipulator.

We observe that TTGO is able to retrieve most of the 8

IK solutions for a given end effector pose. Figure 10 shows

the refined samples from TTGO by conditioning the TT

distribution on a desired end effector position. This validates

our claim that TTGO is able to approximate multimodal

solutions even for a complex distribution.

5.2.2 Inverse Kinematics for 7-DoF Robot with Obstacle

Cost: Unlike a 6-DoF robot, a 7-DoF robot can have an

infinite number of joint angle configurations that correspond

to a given end effector pose. It can also have several distinct

solution modes as in the 6-DoF case. Furthermore, we add

an obstacle cost to the optimization formulation such that the

feasible solution is collision-free. We use the same collision

cost that is used in CHOMP (Zucker et al. 2013), i.e.,

by using the precomputed Signed-distance Function (SDF)

to compute the distance between each point on the robot

link to the nearest obstacle. When there are obstacles, the

standard way of doing numerical IK is to generate multiple

solutions and check for collision until we obtain one that

is collision-free. When the environment is cluttered with

collision objects, the success rate of this approach can be low,

meaning that the user needs to generate a lot of IK solutions

before finding one that is collision-free. The addition of an

obstacle cost helps the solver to directly optimize a collision-

free configuration, but at the same time, it increases the non-

convexity of the problem significantly. The solver can get

stuck very easily at poor local optima, especially with a large

weight on the obstacle cost. This makes it an interesting case

study to showcase the TTGO capability of avoiding poor

local optima. We demonstrate that TTGO could be used to

find solutions robustly.

We first test the IK with obstacle cost for a 3-DoF planar

robot to provide some intuition on the effectiveness of

TTGO. Figure 11 and Figure 12 show some samples from

TTGO conditioned on the target end effector position (shown

in red). By setting α = 1, we focus the sampling around

the mode of the distribution, enabling us to obtain a very

good solution even with only 1 sample (Figure 11). As we

decrease α to 0.8 and retrieve more samples, we can see that

multiple solutions can be obtained easily (Figure 12). Note

that even without the refinement step, all samples reach the

goal closely while being collision-free.

We then apply the formulation on the 7-DoF Franka Emika

robot, where the collision environment is set to be a table, a

box, and a shelf. The task parameters correspond to the end

effector position in the shelf, while the gripper is constrained
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(a) α = 0 (b) α = 0.5 (c) α = 0.75 (d) α = 0.9

Figure 4. 1000 samples (shown as blue dots) from the TT distribution of a 2D sinusoidal function for different values of α. The

function has an infinite number of global optima (on the dark circles) and we see that TTGO is able to sample from these regions.

As we increase α, the samples become more concentrated on the circles.

(a) (a, b) = (1, 100) (b) (a, b) = (0, 140) (c) (a, b) = (0.5, 60) (d) (a, b) = (−1, 100)

Figure 5. 1000 samples from the conditional TT distribution of a Rosenbrock function for various choices of the task parameters

(a, b) and α = 0. The function has a unique global optimum at (a, a2) as shown in red. As the task parameters change, the global

optimum moves accordingly, but TTGO is still able to sample from the high-density regions.

(a) α = 0 (b) α = 0.5 (c) α = 0.75 (d) α = 0.9

Figure 6. 1000 samples from the conditional TT distribution of a Rosenbrock function with the task parameters a = 1, b = 100 and

various values of α. As α increases, the samples become more concentrated around the global optimum (as shown in red).

(a) (a, b) = (3, 3) (b) (a, b) = (3, 14) (c) (a, b) = (7, 11) (d) (a, b) = (13, 5)

Figure 7. 1000 samples from the conditional TT distribution of a 2D Himmelblau function for various choices of the task parameters

(a, b) and α = 0. The location of the multiple global optima (in red) depend on the task parameters, but TTGO is able to generate

the samples from the high-density regions.
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(a) α = 0 (b) α = 0.5 (c) α = 0.9 (d) α = 1

Figure 8. 1000 samples from the conditional TT distribution of a 2D Himmelblau function with task parameters a = 7, b = 11 for

various values of α. As α increases, the samples become more concentrated around the global optima.

(a) α = 0 (b) α = 0.5 (c) α = 0.75 (d) α = 0.9

Figure 9. 1000 samples from the conditional TT distribution of a mixture of Gaussians with J = 10, d = 50, βj = 175, and various

values of α. For visualization, we choose the the first d− 2 coordinates of µj to be the same for all j and choose the

task-parameters to be the first d− 2 coordinate of the centers. This density function has one global optimum (in red) and some

other modes that are comparable to the global optimum. As α increases, the samples become more concentrated around the mode

with the highest density.

(a) (b) (c) (d)

Figure 10. 8 IK solutions of the UR10 robot for a given pose from TTGO samples after refinement, shown from four different views.

5 of the solutions are drawn transparently to provide better visualization. The desired end effector position is shown in red.

to be oriented horizontally with one free DoF around the

vertical axis. Hence, x1 ∈ R
3 while x2 ∈ R

7, so d = 10.

The number of parameters of the TT cores is 1.4× 107

whereas the original tensor P has 1× 1018 parameters. TT-

cross found the tensor in TT-format using only 2× 108

evaluations of the function P . For this application, a rank

of 60 already produces satisfactory performance.

Figure 13 shows samples generated from a TT distribution

on a given end effector position after refinement. Note that

unlike in the 6 DoF case, we can see here a continuous set

of IK solutions due to the additional degrees of freedom. We

also note that distinctly different modes of solutions can also

be observed in this case, as can be seen in the accompanying

video.

The result can be seen in Table 1. We can see that TTGO

consistently outperforms uniform sampling by a wide margin

across the three metrics. The initial cost values of TTGO

samples are much lower than uniform samples, and after

refinement, they converge to smaller cost values on average.

The success rates of TTGO samples are also much higher.

Furthermore, from qualitative analysis, the approximate

solutions of TTGO are very close to the optimized solution.

It is especially important to note that the best out of 1000

uniform samples (bottom right corner of the table) is still

worse than a single sample from TTGO with α > 0.75 (top

left corner).

We can see the effect of prioritized sampling by comparing

the performance of different values of α. In general,
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using higher values of α improves the performance, as

we concentrate the samples around the high-density region.

TTGO samples with α = 0.9 have impressive performance

with 94% success rates even by using only one sample

per test case. However, higher α means less diversity

of solutions, so a trade-off between solution quality and

diversity needs to be considered when choosing the value of

α. Note that even with α = 0 we still obtain a very good

performance by using as few as 10 samples.

5.3 Motion Planning of Manipulators

In this section, we apply our framework to the motion

planning of the Franka Emika robot to find robot motions

that avoid obstacles. Note that it is generally a very high-

dimensional problem. Given a robot with m DoF and

considering T time intervals, the optimization variables x1

have mT dimensions. If we want to ensure that the solution

avoids small obstacles, the number of time discretization

should be large, i.e, bigger than 100 in the case of CHOMP.

That gives us more than 700 dimensions for motion planning

with a Franka Emika robot. To reduce the dimensionality,

we use movement primitives with basis functions as the

trajectory representation, as commonly done in learning from

demonstration (Paraschos et al. 2013; Calinon 2019). With

this representation, the optimization variables consist of the

superposition weights of the basis functions, which is much

smaller than the number of configurations. Furthermore, our

specific formulation of movement primitives, as described in

Appendix A.5, ensures that the motion always starts from the

initial configuration and ends at the given final configuration.

When the goal is given in the task space, this means that we

need to first find the corresponding final configuration, e.g.,

using IK. In our motion planning formulation, we treat both

the final configuration and the weights of the basis functions

as optimization variables and solve them jointly. Finally, the

cost function consists of the reaching cost, the joint limit

cost, the smoothness cost, and the obstacle cost (the same

cost as used in IK). More details on the motion planning

formulation can be found in Appendix A.4

We consider two different motion planning tasks as

follows:

1. Target Reaching: From the initial configuration θ0 ∈
R

m, reach a target location pd ∈ R
3.

2. Pick-and-Place: From the initial configuration θ0 ∈
R

m, reach two target locations p1
d (picking location)

and p2
d (placing location) in sequence before returning

to the initial configuration θ0.

For the target reaching problem, the task parameter is

the target location x1 = pd and the decision variables x2 =
(θ1,w). Here, θ1 ∈ Ωθ ⊂ R

m is the joint angle defining the

final configuration and w = (wk)mk=1 ∈ R
Jm, where wk =

(wk
j )

J
j=1 ∈ RJ are the superposition weights of the basis

functions representing the motion from θ0 to θ1. We use

J = 2 and m = 7 for the 7-DoF Franka Emika manipulator,

so the total number of dimensions for the reaching task is

d = 3 + 7 + 2× 7 = 24.

For the pick-and-place problem, the task parame-

ters are the two target locations (pick and place loca-

tion): x1 = (p1
d,p

2
d). The decision variables are x2 =

(θ1,θ2,
01w, 12w, 20w), where θ1 and θ2 are the con-

figurations corresponding to the two target points, w =
(01wk, 12wk, 20wk)mk=1 where uvw ∈ R

Jm are the weights

of the basis functions representing the movement from the

configuration θu to θv . Hence, the total number of dimen-

sions for the pick-and-place task is d = 2× 3 + 2× 7 + 3×
2× 7 = 62.

We use the transformation P (x) = exp(−C(x)2). The

target location pd for target reaching and p1
d in the pick-

and-place problem are inside the shelf as in the IK problems

(picking location). For the pick-and-place task, the second

target location p2
d is on the top of the box (drop location).

We discretize each of the task parameters using 100 points

and the decision variables with 30 points. We use radial

basis functions with J = 2, which we find sufficient for our

applications. The bounds on the weights of basis function for

a joint are the same as the joint limits i.e., (wk
min, w

k
max) =

(θmink
, θmaxk

).
Figure 14 shows some examples of a reaching task for a

3-DoF planar manipulator. We can see here that the TTGO

samples lead to good solutions, i.e., they avoid collisions

while reaching the target quite accurately. In comparison,

random sampling initialization often results in poor local

optima, where the final solutions still have collisions even

after the refinement. Figure 15 shows the same reaching task

for the Franka Emika robot, where the multimodality of the

solutions is clearly visible. We also test the trajectory on the

real robot setup as shown in Figure 17 and 18.

The results are presented in Table 2 and 3. Similarly to the

IK results, TTGO outperforms uniform sampling by a wide

margin across all metrics. In reaching tasks and especially

in pick-and-place tasks, uniform sampling performs quite

badly in terms of success rates, since the tasks are much

more difficult than the IK problem. Taking only 1 TTGO

sample also does not produce satisfying performance here

(i.e., ∼ 60− 70%) success rates, but using 10-100 samples

already makes a good improvement. In pick-and-place tasks,

since we consider the three different phases as a single

optimization problem, it becomes quite complicated, and low

values of α do not provide good success rates, but prioritized

sampling with α = 0.9 manages to achieve 89% success

rates using 1000 TTGO samples.

6 Discussion

6.1 Quality of the Approximation

In this paper, we used a TT model to approximate

an unnormalized PDF. The quality of the approximation

highly depends on the TT-rank. A nice property of TTGO

that is derived from the TT-cross method is that the

model capacity can be incrementally augmented (i.e., non-

parametric modeling). By increasing the number of iterations

of TT-cross and allowing a higher rank of the TT model,

the approximation accuracy can be improved continuously.

Furthermore, we can also use the continuous version of the

TT model to allow continuous sampling. For initialization

purposes, though, we found that the discrete version is

enough, as the initialization does not have to be precise.
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The performance measures for three different applications with the Franka Emika manipulator. We compare the performance of

TTGO for initializing a given gradient-based solver (namely, SLSQP) against initialization from uniform distribution. The three

performance metrics are the cost at the initialization (ci), the cost after optimization (cf ) using the solver and the success rate. The

criteria for success is that cf ≤ 0.25. We compute the average of each of these measures over 100 randomly chosen test cases.

Each of the target points are chosen so that they are sufficiently away from the surface of the obstacle but they are not guaranteed

to be feasible.

Table 1. Inverse kinematics of the Franka Emika robot

Method α

# Samples

1 10 100 1000

ci cf Success ci cf Success ci cf Success ci cf Success

TTGO

0.9 1.04 0.01 94.0 0.55 0.02 98.0 0.37 0.02 98.0 0.26 0.02 99.0

0.75 1.52 0.07 84.0 0.65 0.02 95.0 0.37 0.02 95.0 0.24 0.03 97.0

0.5 2.01 0.08 88.0 0.85 0.04 93.0 0.43 0.04 93.0 0.28 0.01 98.0

0 2.88 0.17 71.0 1.23 0.05 91.0 0.68 0.05 91.0 0.39 0.04 96.0

Uniform - 8.42 1.22 37.75 4.47 0.91 45.5 2.56 0.5 59.25 1.59 0.24 75.0

Table 2. Target Reaching

Method α

# Samples

1 10 100 1000

ci cf Success ci cf Success ci cf Success ci cf Success

TTGO

0.9 3.99 0.17 62.0 1.1 0.09 86.0 0.71 0.1 86.0 0.58 0.09 88.0

0.75 5.63 0.21 53.0 1.29 0.14 72.0 0.78 0.1 86.0 0.56 0.1 83.0

0.5 4.53 0.17 50.0 1.54 0.14 64.0 0.96 0.11 83.0 0.62 0.1 84.0

0 6.7 0.31 46.0 2.06 0.18 60.0 1.3 0.12 82.0 0.84 0.12 86.0

Uniform - 13.85 1.34 19.25 4.79 0.91 28.75 3.02 0.68 41.0 2.06 0.45 53.5

Table 3. Pick-and-Place

Method α

# Samples

1 10 100 1000

ci cf Success ci cf Success ci cf Success ci cf Success

TTGO

0.9 2.41 0.16 70.0 1.41 0.15 81.0 1.05 0.15 79.0 0.87 0.14 89.0

0.75 3.25 0.17 66.0 1.71 0.17 66.0 1.31 0.14 84.0 1.01 0.15 78.0

0.5 4.31 0.26 54.0 2.33 0.19 62.0 1.66 0.17 77.0 1.29 0.18 76.0

0 6.2 0.27 48.0 2.98 0.23 48.0 2.17 0.21 58.0 1.61 0.18 71.0

Uniform - 9.64 0.78 23.75 5.23 0.63 30.25 3.95 0.49 39.5 3.07 0.39 44.25

(a) (b) (c) (d)

Figure 11. A single sample taken from a conditional TT distribution with α = 1 for inverse kinematics of a 3-link planar manipulator

in the presence of obstacles (gray spheres). The yellow circle and the green segments depict the base and the links of the robot,

respectively. The target end effector positions are shown in red. The samples are very close to the targets and collision-free, even

without refinement.

When training the TT model, we can evaluate the quality

of the approximation by picking a set of random indices,

computing the value of the approximate function at those

indices, and comparing it against the actual function value.

This is an important evaluation for most applications that

aim at finding an accurate low-rank TT decomposition of a

given tensor across the whole domain. For our case, though,

we are only interested in the maxima of the function, and
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(a) (b) (c) (d)

Figure 12. Best 10 out of 50 samples taken from a conditional TT distribution with α = 0.8 for inverse kinematics of a 3-link planar

manipulator in the presence of obstacles. The samples are already close enough to the optima even without refinement and the

multimodality of the solutions is clearly visible.

(a) (b)

(c) (d)

Figure 13. The samples taken from a conditional TT

distribution for the IK of a Franka Emika manipulator in the

presence of obstacles, after refinement. We can see that there

is a continuous set of solutions due to the additional degrees of

freedom.

we do not really care about the approximation accuracy

in the low-density region, i.e., the region with the high

cost. Even if TT-cross cannot find an accurate low-rank

TT representation across the whole domain (e.g., due to

non-smoothness), it can still capture the maximal elements

robustly (Sozykin et al. 2022; Goreinov et al. 2010) as the

interpolation in the TT-cross algorithm is done using the high

magnitude elements. In practice, we found that even when

the approximation errors do not converge during the training,

the resulting samples from the TT model are still very good

as initialization.

6.2 Computation Time

The computation time of TTGO can be divided into offline

computation, i.e., the time to construct the TT model P , and

(a) TTGO Task-1 (b) TTGO Task-2

(c) Random Task-1 (d) Random Task-2

Figure 14. Motion Planning of Planar Manipulators: The task is

to reach a given target point in the square region depicted in

cyan (task space) from a fixed initial configuration (dark green

configuration). The final configuration and the joint angle

trajectory to reach the target point are the decision variables.

The approximate solutions from TTGO for two different tasks

are given in (a) and (b) (before refinement). The solution

obtained by a gradient-based solver with random initialization

could result in poor local optima as can be seen in (c) and (d).

online computation, i.e., the time to condition the TT model

on the given task parameters and to sample.

The offline computation time depends on the number of

TT-cross iterations, the maximum rank r, and the discretiza-

tion (i.e., how many elements along each dimension of the

tensor). The number of function evaluations has O(ndr2)
complexity hence linear in terms of the number of dimen-

sions and the number of discretization points. The compu-

tation time of a single cost function also has a significant

influence on the TTGO computation time. However, we used
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(a) (b)

(c) (d)

Figure 15. Best 3 out of 1000 samples taken from a conditional

TT distribution with α = 0.75 for the reaching task of a

manipulator in the presence of obstacles, after refinement. The

initial configuration is shown in white, while the final

configuration is shown in red, green, and blue, for each solution.

The end effector path is shown by the dotted curves. The

multimodality is clearly visible from these three solutions.

(a) (b)

(c) (d)

Figure 16. A sample taken from a conditional TT distribution for

the pick-and-place task, after refinement. (a) to (d) represent

the same motion in different perspectives. In green, we see the

picking configuration (from the shelf) and placing configuration

(on the box), while the initial configuration is shown in white.

The end effector positions in the shelf and the box are the task

parameters.

(a) (b)

(c) (d)

Figure 17. Real robot implementation of one of the TTGO

solutions for the reaching task. (a) to (d) shows the motion from

the initial configuration to the final configuration.

(a) (b)

(c) (d)

(e) (f)

Figure 18. Real robot implementation of one of the TTGO

solutions for the pick-and-place task. (a) and (f) represent the

initial and the final configuration of the robot (same in this case),

(a) to (c) show the motion from the initial configuration to the

picking configuration, (c) to (e) show the motion from the picking

configuration to the placing configuration.

parallel implementation with GPU that allows us to construct

all of the models in our applications in less than one hour.

The rank r and the number of iterations of TT-cross also

determine the variety in the solutions proposed by TTGO.

If the application does not demand multiple solutions, we

can keep the maximum allowable rank of the TT model and

the number of iterations of TT-cross to be very low which

results in a significant saving in offline computation time

and the sampling time in the online phase. However, for the

experiments in this paper we kept the rank r to be reasonably

large (about r = 60 for IK and motion planning problems

with manipulators) so that we could obtain a variety of

solutions from TTGO.
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(b) d = 70

Figure 19. Sampling Time: The sampling procedure has a

computational complexity of O(ndr2) and it is independent of

the application. (a) and (b) show the computation time curves

for two different values of d with the size of each mode being

n = 100. For each figure, we show the sampling time for two

different ranks as shown in red (r = 10) and green (r = 50).

For most of the 2D benchmark functions, it takes less

than 0.01s to obtain the TT model. For the high-dimensional

mixture of Gaussians and Rosenbrock functions with d < 30,

we could obtain good enough TT-models in less than 60s. It

takes about 30s for the inverse kinematics problem with the

Franka Emika robot, which corresponds to 30 iterations of

TT-cross. Finally, the target reaching task takes around 10
minutes while the pick-and-place task takes around 1 hour.

The motion planning computation time is relatively slower

due to the time for computing a single cost function since

we compute the obstacle cost at small time intervals. It can

be made faster by considering the continuous collision cost

as done in TrajOpt (Schulman et al. 2014), since it allows us

to use coarser time discretization for evaluating the collision

cost, resulting in a faster evaluation of the cost function.

For the online computation time, the conditioning time is

insignificant as it is very fast, so we focus on the sampling

time. Unlike the TT model construction, the sampling time

does not depend on the cost function and only depends

on the size of the tensor. The computation complexity is

O(ndr2). Results of sampling time evaluation with the

different number of samples averaged over 100 tests are

given in Figure 19. We show the results for d = 7 and

d = 70, roughly corresponding to the IK and the pick-

and-place task, respectively. We can see that due to the

parallel implementation, generating 1000 samples is not

much different compared to generating 1 sample. For the

IK problem, generating 1 sample takes around 1-3 ms,

which is comparable to the solving time of a standard IK

solver. For the pick-and-place task, generating 1 sample takes

around 15ms, much faster than a typical computation time

for motion planning (typically in the order of 1s).

The offline training uses an NVIDIA GEFORCE RTX

3090 GPU with 24GB memory, while the sampling time

evaluation is performed on an AMD Ryzen 7 4800U laptop.

6.3 Comparison With Previous Work Using

Variational Inference

As described in Section 2.3, the work closest to our approach

is SMTO (Osa 2020) that also transforms the cost function

into an unnormalized PDF. SMTO uses Variational Inference

to find the approximate model as a Gaussian Mixture Model

(GMM) by minimizing the forward KL divergence. Its main

limitation, however, is that it requires a good proposal

distribution to generate the initial samples for training the

model. These samples are used to find the initial GMM

parameters, and subsequent iterations sample directly from

the GMM. Hence, the initial samples have a large effect on

the final solutions. When the initial samples do not cover

some of the modes, subsequent iterations will have a very

small chance of reaching those modes. We verified this

by running the open-source codes provided by the author.

Even for the 4-DoF manipulator example (Figure 7 in their

paper), with the standard parameters given by the author,

SMTO cannot find a single solution when the position of

the obstacles are changed to increase the difficulty of the

motion planning problem (e.g., by moving the large obstacle

closer to the final configuration). It starts to find a solution

only after we increased the covariance of the proposal

distribution by 10-100 times the standard values, because the

initial samples can then cover the region near the feasible

solutions. Furthermore, when we added one more obstacle,

SMTO failed to find any solution, even with the higher

covariance and a larger number of samples. In comparison,

we have shown in this article that TTGO can solve difficult

optimization problems reliably while also providing multiple

solutions. Their 4-DoF setup is in fact very similar to our

planar manipulator example in Figure 14, and we have

shown that TTGO can consistently produce good solutions

for different target locations. Since TTGO does not use any

gradient information to find the TT model, it does not get

stuck in poor local optima easily. We provide more detail on

the comparison in Appendix A.6.

In Osa (2022), the author proposed another method called

LSMO to handle functions with an infinite set of solutions

by learning the latent representation. As we showed in

Section 5.1 for sinusoidal and Rosenbrock functions, TTGO

is naturally able to handle these kinds of distributions, even

without any special consideration or change on the method.

Unlike TTGO, SMTO and LSMO need to solve every

single optimization problem from scratch. In TTGO’s

terminology, this corresponds to the task parameters being

constant—a special case of the problem formulation

considered so far in this paper. For such problems, since we

only have a single task, the training phase in TTGO can be

much faster by using a very low TT rank (r < 10 almost

always works for most optimization problems without task

parameters) and fewer iterations of TT-cross. The advantage

of TTGO in such applications as compared to other global

optimization approaches such as CMA-ES is that TTGO can

provide multiple solutions. For example, we could find the

optima of a 50D mixture of Gaussians with 5 components

and 30D Rosenbrock considered in Section 5.1 in less than

2 seconds. In this way, TTGO can be considered as a tool

for global optimization that can offer multiple solutions.

Appendix A.6 discuss this in more detail.

In this paper, however, we proposed TTGO as a more

generic tool. By anticipating and parameterizing the possible

optimization problems using the task parameters, TTGO

allows distribution of the computational effort into the offline

and the online phase. In practice, this means that most of

the computation time takes place during offline computation,

while the online computation (conditioning on the TT model
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and sampling from it) only takes a few milliseconds. SMTO

and LSMO, in comparison, take several minutes to solve a

single motion planning problem for the 7-DoF manipulator

case. Similarly, most trajectory optimization solvers (e.g.,

CHOMP, TrajOpt) and global optimization solvers (e.g.,

CMA-ES) can only solve a given optimization problem at

each run.

6.4 Multimodality

As we have shown in this paper, TTGO is able to generate

samples from multiple modes consistently. Furthermore,

continuing the iteration of TT-cross will result in covering

more modes as the rank of TT-model can be dynamically

increased in the TT-cross algorithm. However, unlike GMM,

it is not easy to sample from only a specific mode, or to

identify how many modes there are in a given problem. If we

need to cluster the samples, standard clustering algorithms

such as k-means clustering can be used.

6.5 Further possible extensions

As test cases for TTGO, we considered in this article

two robotics problems that are commonly formulated as

optimization problems with specific formulations of the IK

and the motion planning problems. However, the proposed

method is more general and can be applied to a variety

of applications in robotics. For example, we can consider

other choices of task parameters, e.g., by including the

initial configuration, the end effector orientation, or even the

position of obstacle(s) as task parameters.

TTGO approximates the joint distribution of the task

parameters and the decision variables. In the TT model, it

does not differentiate between these two types of variables

internally. While in this article we always conditioned the

model on the given task parameters, we could actually

choose any subset of variables from the joint distribution to

condition on. For example, for the IK problem, it is possible

to also condition on one of the joints, when we want to set a

particular value for that joint. For the pick-and-place task, it

is even possible to condition only on the first target point, and

the second target point is treated as the decision variables.

This means that we can obtain possible values of placing

locations that are optimal with respect to the cost functions

and the first target point. This flexibility does not exist in

most other existing methods tackling similar problems, and it

would be interesting to further extend this capability in other

robotics applications.

Other robotics problems can be considered as long as they

can be formulated as optimization problems. For example,

optimal control formulates the problem of finding the control

commands as an optimization problem. There are recent

works that used a database approach to warm start an optimal

control solver (as described in Section 2.2), which could

potentially be improved by the use of TTGO. Note here

that such control problems can be more challenging than

the planning problems presented here as the cost function

is sharper (i.e., a slight change in the control command can

result in a very different state trajectory and hence the cost

value). Further research would then be required to adapt

TTGO to such problems. Furthermore, some applications

such as task and motion planning (Toussaint et al. 2018)

or footstep planner for legged robots (Deits and Tedrake

2014) can be formulated as Mixed Integer Programming.

Since TTGO does not require gradient information, such

a combination of discrete and continuous optimization

provides another interesting application area to be explored.

In this paper, we obtained the TT model (correspondingly

the TT distribution which captures the low cost solutions)

in an unsupervised manner using TT-cross with access to

only the definition of the cost function. This approach was

motivated by the fact that in many applications we do not

have the access to the samples (or solutions) that correspond

to low cost for different task parameters. However, if we

have a database of good solutions (i.e., optimal solutions

corresponding to different possible task parameters), we can

still use TTGO in an alternative way. In such cases, instead

of using TT-cross to obtain the TT model, we can use other

modeling techniques such as supervised learning or density

estimation techniques as described in Han et al. (2018),

Miller et al. (2021), Novikov et al. (2021). Such approaches,

due to the expressive power and generalization abilities of TT

models, can still capture multiple solutions while allowing

fast ways to retrieve solutions as described in this paper.

However, in robotics applications as described in Section

1, obtaining the database of good solutions is a challenging

problem.

The choice of transformation used to obtain the probability

function from the cost function plays an important role in

TTGO. In the paper, we used an exponential function as the

transformation function, however, a study on other possible

transformation functions should be investigated in future

work. Moreover, in many robotics applications, the user has

the flexibility to design the cost function. This will also play

a role in TTGO, as smoother functions can be captured as a

low rank TT model using TT-cross with significantly lower

computational cost. In the robotic applications considered in

this paper we used the standard cost functions and it was non-

smooth due to the cost on collision avoidance. However, a

smoother cost function could still potentially be designed for

such applications. This could improve the performance and

the computation time given in this paper.

6.6 Limitations

One of the major limitations of TTGO is to scale it to very

high-dimensional problems. While we have tested TTGO up

to d = 100 dimensions, many robotics problems involve an

even higher number of dimensions. For example, a standard

motion planning formulation of a 7-DoF manipulator in

CHOMP can easily exceed 100 dimensions. In this paper,

we overcome this issue by relying on motion primitive

representations, which works well for some trajectory

planning applications. For other purposes, we may need to

rely on other nonlinear dimensionality reduction techniques

as preprocessing such as autoencoders to determine the

choice of task parameters and the decision variables for

TTGO.

Although constraints like joint limits can be handled

naturally in TTGO, other constraints in the optimization

problem needs to be handled by imposing a penalty on

the constraint violation in the cost function itself (i.e.,

formulated as soft constraints, similar to the problem

formulation in evolutionary strategies and reinforcement
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learning). This may not be ideal for some applications in

robotics that require hard constraints. However, the existing

techniques for constrained optimization are mostly gradient-

based, hence sensitive to initialization. Thus, we could still

use TTGO for initializing such solvers.

Note that to achieve fast offline computation time,

TTGO requires a batch of cost function evaluations to be

processed in parallel. Without such parallelization available

for computation, the time to find the TT model using TT-

cross would be too long.

7 Conclusion

In this article, we have presented TTGO as a novel frame-

work to provide approximate solutions of an optimization

problem. By applying it on several challenging benchmark

optimization functions and robotics applications (inverse

kinematics and motion planning), we have shown that TTGO

can provide diverse good quality solutions for challenging

optimization problems in which the random initialization

of solvers often fails. Furthermore, it can provide multiple

solutions from different modes (when these different options

exist). We have also shown that we can adjust the sampling

priority, i.e., either to focus on obtaining the best solution

or to produce more diverse solutions. All of these features

can be very helpful for initializing optimization solvers on

challenging robotics problems. The method could potentially

be applied to other robotics tasks that can be formulated as

optimization problems such as task and motion planning or

optimal control, as we plan to investigate in future work.
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Rabanser S, Shchur O and Günnemann S (2017) Introduction

to tensor decompositions and their applications in machine

learning. ArXiv 1711.10781.

Rasmussen C and Williams C (2006) Gaussian Processes for

Machine Learning. Cambridge, MA, USA: MIT Press.

Rutenbar RA (1989) Simulated annealing algorithms: An overview.

IEEE Circuits and Devices magazine 5(1): 19–26.

Savostyanov DV and Oseledets IV (2011) Fast adaptive inter-

polation of multi-dimensional arrays in tensor train format.

The 2011 International Workshop on Multidimensional (nD)

Systems : 1–8.

Schulman J, Duan Y, Ho J, Lee A, Awwal I, Bradlow H, Pan J,

Patil S, Goldberg K and Abbeel P (2014) Motion planning with

sequential convex optimization and convex collision checking.

Intl Journal of Robotics Research 33(9): 1251–1270.
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A Appendix

A.1 Interpolation of Tensor Cores

Given the discrete analogue tensor P of a function P , we

can obtain the continuous approximation by interpolating

the TT cores, in a similar way as in the matrix case in

Section 3.3. For example, we can use a linear interpolation

for each core (i.e., between the matrix slices of the core) and

define a matrix-valued function corresponding to each core

k ∈ {1, . . . , d},

P k(xk) =
xk − xik

k

xik+1
k − xik

k

P
k
:,ik+1,: +

xik+1
k − xk

xik+1
k − xik

k

P
k
:,ik,:

,

(14)

where xik
k ≤ xk ≤ xik+1

k and P k : Ωxk
⊂ R→ R

rk−1×rk

with r0 = rd = 1. This induces a continuous approximation

of P given by

P (x1, . . . , xd) ≈ P 1(x1) · · ·P d(xd). (15)

Note that a higher-order polynomial interpolation can also be

used if needed.

A.2 TT-Cross Algorithm

In this section, we outline TT-cross algorithm for finding

a TT decomposition. Here, we only sketch the algorithm

for a fixed rank approximation and highlight how it can be
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adapted to adjust the rank of the approximation dynamically,

as used in this paper. For more detail, we refer the readers

to Oseledets and Tyrtyshnikov (2010); Savostyanov and

Oseledets (2011); Dolgov and Savostyanov (2020).

1. Input: d-th order tensor P ∈ R
n1×···×nd , approxima-

tion rank r = (r1, . . . , rd−1)
2. Set: r0 = 1, rd = 1, n0 = 1, nd+1 = 1
3. Initialize: randomly choose initial column index sets

jk = (jk1 , . . . , j
k
rk
) ⊂ (1, . . . , nk+1 · · ·nd), for k =

1, . . . , d− 1
4. Unfold the tensor P along mode 1 into matrix: P 1 =

R
n1×n2···nd

5. Repeat until convergence:

5.1 for k = 1, . . . , d− 1 (forward sweep)

• using MAXVOL to find the row index set

ik = (ik1 , . . . , i
k
rk
) ⊂ (1, . . . , nkrk−1) cor-

responding to the maximum submatrix of

P k
:,jk

• reshape the matrix P k
ik,: into matrix P k+1 ∈

R
nk+1rk×nk+2···nd .

5.2 reshape matrix P d ∈ R
ndrd−1×1 appropriately

(mode-2 unfolding) to obtain the TT-core P
d ∈

R
rd−1×nd×1

5.3 for k = d− 1, . . . , 1 (backward sweep)

• using MAXVOL to find the column

index set jk = (jk1 , . . . , j
k
rk
) ⊂

(1, . . . , nk+1 · · ·nd) corresponding to

the maximum submatrix of P k
ik,:

• reshape the matrix P k
:,jk(P

k
ik,jk)

−1 ∈
R

nkrk−1×rk appropriately (mode-

2 unfolding) to obtain the TT-core

P
k ∈ R

rk−1×nk×rk

6. Output: The TT cores Pk for k = 1, . . . , d

Note that in practice, the MAXVOL and matrix

operations are performed using the QR decomposition of

the matrices in the above algorithm to avoid numerical

instabilities. Moreover, in a practical implementation of the

above algorithm the matrices P k need not be computed,

we directly work with the function that returns its

elements (or sub-matrices) given the indices. Commonly

used convergence criteria include the maximum number of

iterations in TT-cross (forward and backward sweeps in the

above algorithm) and a lower bound on the change in the

norm of the TT approximation over successive iterations of

TT-cross. In the algorithm, the rank r can also be adapted

dynamically after each iteration by either reducing the index

set or augmenting it with a randomly chosen enrichment set

for each mode during the iterations. We refer to Savostyanov

and Oseledets (2011); Dolgov et al. (2020) for the details.

A.3 Inverse Kinematics Formulation

The cost function for the inverse kinematics problem in

Section 5.2.2 is given by

C(x) =
1

3

(Cp(θ,pd)

βp
+

Cobst(θ)

βobst

+
Corient(θ)

βorient

)

, (16)

where x = (x1,x2) and:

• Cp(θ,pd) = ‖pd − p(θ)‖, Euclidean distance of the

end effector position from the desired position.

• Cobst(θ) represents the obstacle cost based on the

Signed Distance Function (SDF). The links are

approximated as a set of spheres (as done in CHOMP),

and we use the SDF to compute the distance from each

sphere to the nearest obstacle.

• Corient(θ) represents the cost on the orientation of the

end-effector. In our application, we specify a desired

orientation of the end-effector, given by quaternion

qd, while allowing a rotation around the axis of

rotation vd which corresponds to the z-axis of the

world frame. This constraints the gripper orientation

to be horizontal while allowing rotation around the z-

axis. This is suitable for picking cylindrical objects

from a shelf. The cost is then Corient(θ) = 1− <
v(θ),vd >2 where v(θ) represents the screw axis

(computed from the quaternion) of the actual end-

effector frame w.r.t. the desired frame. Alternatively,

if the application demands a variation in the desired

orientation, one could use the pose (pd, qd) directly as

the task parameter.

• βp, βobst, βorient are scaling factors for each cost.

Intuitively, they represent the acceptable value for each

cost. We use βp = 0.05, βobst = 0.01 , and βorient =
0.2 for the orientation.

For the IK problem of the 6-DoF UR10 robot, there is no

obstacle cost, and the orientation is specified to be identity

(corresponding to upward-facing end-effector orientation)

without any free axis of rotation.

A.4 Motion Planning Formulation

For both the reaching and the pick-and-place tasks, the cost

function, x = (x1,x2), is given by

C(x) =
1

4

(Cp(x)

βp

+
Cobst(x)

βobst

+
Corient(x)

βorient

+
Ccontrol(x)

βcontrol

)

(17)

with the following objectives:

• Cp(x) represents the cost on the end effector

position(s) from the target location(s).

• Cobst(x) represents the cost incurred from the

obstacles computed using SDF as in Section 5.2.2 but

accumulated for the whole motion.

• Corient(x) represents the cost on the orientation of the

end effector at the target location(s).

• Ccontrol(x) represents the cost of the length of the joint

angle trajectory and the length of the end effector

trajectory.

• βp, βobst, βorient, βcontrol are scaling factors for each

cost. Intuitively, they represent the acceptable nominal

cost value for each cost. We use βp = 0.05, βobst =
0.1, βorient = 0.2, βcontrol = 2.

We consider the initial configuration of the manipulator

to be fixed (we can relax this condition by considering the

initial configuration as a task parameter). In the reaching

task, the objective is to reach an end effector target location

on the shelf. In the pick-and-place task, the objective is to

reach a target on the shelf to pick an object, then move to

Prepared using sagej.cls



25

another target above the box to place the object, and finally

move back to the initial configuration.

We consider the target to be in Cartesian space instead

of the configuration space. Note that an optimization-based

motion planning solver can handle both types of targets by

adjusting the reaching cost term. Reaching a target in the

configuration space is usually an easier optimization problem

as it provides a clear gradient to the solver, which is not

the case for reaching a Cartesian target. On the one hand,

a Cartesian target implies a larger solution space, as the

target may correspond to more than one configuration. On

the other hand, the locally optimal behavior of a gradient-

based solver means that it will try to reach the target with

the configuration that is closest to the initial configuration,

especially if it is initialized by a stationary trajectory at the

initial configuration. When such a solution is not feasible, it

is difficult for a gradient-based solver to find another solution

with a final configuration significantly different from the

initial one, except with a good initialization. An alternative

is to first determine several possible final configurations

using IK, and then use the motion planning solvers to

reach those configurations. However, choosing the good

configurations as the target is not trivial, as we cannot easily

guess whether a particular configuration is reachable from

the initial configuration. Even when it can find a solution,

the solution may be highly suboptimal.

In our formulation, we consider the IK problem and

the motion planning problem simultaneously. The decision

variables consist of two parts: the robot configuration(s)

that correspond to the Cartesian target(s), and the joint

angle trajectory that reaches those configurations. While

simultaneously optimizing them is quite difficult, our TTGO

formulation allows us to obtain even multiple solutions. To

reduce the dimensionality of the problem, we represent the

joint angle trajectory using motion primitives, as described

in Section A.5. Given the initial and final configuration, our

motion primitives formulation ensures that the movement

always starts from the initial configuration and ends at the

final configuration while satisfying joint limits.

Consider an m-DoF manipulator. The configuration of

the manipulator can be represented using the joint angles

θ = (θ1, . . . , θm) ∈ R
m. We can assume that the domain of

the joint angles is bounded by a rectangular domain Ωθ =
×m

i=1[θmini
, θmaxi

]. We represent the trajectory evolution in

terms of the phase of the motion, i.e., t ∈ (0, 1) with t = 1
representing the end of the motion.

A.5 Motion Primitives

In our motion planning formulation, we generate motions

using a basis function representation that satisfies the

boundary conditions (with respect to phase/time) and the

limits of the trajectory (the magnitude) while maintaining

zero velocity at the boundary. Suppose we are given

a choice of basis functions φ = (φk)
J
j=1, φj(t) ∈ R, ∀t ∈

[0, 1]. For example, we could use radial basis functions

φj(t) = exp(−γ(t− µj)
2) with µj ∈ [0, 1], γ ∈ R

+. We

define a trajectory using a weighted combination of these

basis functions as τ̂(t) =
∑J

j=1 wjφj(t). We transform this

trajectory so that the boundary conditions and joint limits are

satisfied.

Given the trajectory τ̂(t), t ∈ [0, 1], and the boundary con-

ditions τ(0) = τ0, τ(1) = τ1 and the limits τmin ≤ τ(t) ≤
τmax, we can transform τ̂(t) to obtain a trajectory τ(t) =
Ψ(τ̂(t), τ0, τ1, τmin, τmax) such that τ(0) = τ0, τ(1) = τ1
and τmin ≤ τ(t) ≤ τmax. We define the transformation Ψ as

follows:

1. Input: τ̂ , τ0, τ1, τmin, τmax

2. Discretize the time interval [0, 1] uniformly to obtain

{ti}Ni=0 so that dt = ti+1 − ti, t ∈ {ti}Ni=0.

3. Define ẑ(t) = τ̂(t) + τ0 − τ̂(0) + t(τ1 − τ0 +
τ̂(0)− τ̂(1)), which satisfies the specified boundary

conditions.

4. Clip the trajectory within the joint limits to obtain

z(t) = clip(ẑ(t), τmin, τmax). The clipping will result

in non-smoothness.

5. Smoothen the trajectory z(t) to obtain the desired

trajectory τ(t): To do this, we append the trajectory

z(t) with the same values as initial value in the

beginning and with the final value at the end. Then we

can apply a moving average filter over the trajectory.

This creates the desired smooth trajectory τ(t) that has

zero velocity at the boundary.

This way we can generate smooth motion while satisfying

the boundary conditions and the joint limits, and maintain

zero velocity at the boundary.

A.6 TTGO with Constant Task Parameters

In this paper, we described TTGO in its generic form, where

we consider varying task parameters when training the TT

model. This allowed us to produce approximate solutions to

a given task quickly by conditioning the TT model. However,

TTGO can also be used when we only want to solve a

single task. In this particular case, the TT model corresponds

to the probability distribution of only the optimization

variables, and the training will require significantly less time

as compared to the generic form. A maximum TT-rank < 5
works well for the applications considered in this paper. In

terms of the computation time and the quality of solution, it

is comparable to evolutionary strategies such as CMA-ES or

GA, but TTGO can offer multiple solutions.

For such applications, our work is closely related to

TTOpt (Sozykin et al. 2022) which is a gradient-free discrete

optimization method based on TT-cross. The performance of

the method has been shown to be competitive to evolutionary

strategies. In this approach, the objective is to maximize

a reward function (analogous to the probability density

function in TTGO). TTOpt discretizes the reward function

and it assumes that the maximal element of the discrete

analogue of the reward function closely approximates

the maximum of the reward function. The maximum

of the discrete analogue is found using TT-cross. Here,

the main interest to use TT-cross is not for building a

TT approximation but the following feature of TT-cross:

the maximal elements of the tensor is highly likely to

be in the maximum volume submatrix which is found

using MAXVOL in TT-cross and the maximal element of

the submatrix increases monotonically over the iterations.

During each iteration of TT-cross, the maximal element from

the submatrix found using MAXVOL is stored in the memory

and updated in the following iterations until convergence.
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(a) (b) (c) (d)

Figure 20. Four different solutions obtained by TTGO for a motion planning task with 4-link planar manipulator. The initial and final

configuration are given (dark green) and the optimization variables are the weights of the basis functions (two basis functions per

joint) that determine the joint angle trajectory.

Figure 21. A distribution of 50 smooth trajectories generated by

transforming trajectories generated by using two radial basis

functions with weights chosen uniformly in the range [−1, 1].
The transformations are done to maintain a boundary condition

τ0 = −0.25, τ1 = 0.25 and the limits τmin = −1, τmax = 1.

Unlike TTOpt, TTGO uses TT-cross to model the density

function first and uses the samples from the TT model to

approximate a solution which is then refined using local

search techniques, while providing the option of estimating

multiple solutions.

To test the performance of TTGO as a single task

optimizer, we have applied it to motion planning of both

the 2-D planar robot and Franka Emika manipulator. We

set the initial and the desired final configurations, and

TTGO finds the trajectory to move to the final configuration

while avoiding the obstacles. The joint angle trajectory

is represented using the motion primitives as described

in Appendix A.5, thus the optimization variables are the

weights of the basis functions. We used 2 radial basis

functions for each joint.

For the 2-D planar robot, we replicate the setting in Figure

7 of Osa (2020), but we move the obstacle positions and

add two more obstacles to increase the difficulty of the

problem. With a fixed task parameter, the training of the TT

model only takes less than 7 seconds, and we easily obtain

multiple solutions. Figure 20 shows four solutions obtained

by TTGO after the refinement step. We can clearly see the

multimodality of the solutions.

For the Franka Emika manipulator, we use the same

setting as in Section 5, i.e., with the shelf, table, and box as

the collision objects. In addition, we add a cost to maintain

the end effector pose (horizontal) throughout the trajectory.

The initial and final configurations are set such that both end

effector positions are located within the shelf, and they are

computed using TTGO for IK, as explained in Section 5.2.2.

With this setting, we are able to obtain multiple solutions

consistently for all possible scenarios (we test with different

end effector positions within the shelf) with 10 iterations

of TT-cross and a maximal TT-rank of 5. With the fixed

task parameter, it only takes under 5 seconds to obtain the

solutions (includes TT modeling, sampling and fine tuning).

Some solutions for a given task are shown in Figure 1.

In comparison, SMTO (Osa 2020) takes around 2 minutes

to solve the 2-D planar robot problem and 1 minute to solve

the 7-DoF manipulator example (using their matlab codes),

whereas LSMO (Osa 2022) takes even longer, i.e., more

than five minutes (according to their paper). For the 2-D

example, SMTO fails to find any solution when we added

more obstacles as in Figure 20, even after increasing the

covariance by 100 times. This is because none of the initial

samples from the proposal distribution is close to the feasible

region. We also tried increasing the number of samples from

600 (standard value) to 2000, but it still cannot find any

solution. Furthermore, adding the number of samples by∼ 3
times increases the computation time of SMTO by∼ 3 times,

i.e., from ∼ 150s to ∼ 500s.
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