
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. PREPRINT VERSION. 1

How Rough is the Path? Terrain Traversability
Estimation for Local and Global Path Planning

Gabriel G. Waibel1,2, Tobias Löw1,2, Mathieu Nass1,3, David Howard1, Tirthankar Bandyopadhyay1, Paulo V. K.
Borges1

Abstract—Perception and interpretation of the terrain is es-
sential for robot navigation, particularly in off-road areas, where
terrain characteristics can be highly variable. When planning a
path, features such as the terrain gradient and roughness should
be considered, and they can jointly represent the traversability
cost of the terrain. Despite this range of contributing factors,
most cost maps are currently binary in nature, solely indicating
traversible versus non-traversible areas. This work presents a
joint local and global planning methodology for building contin-
uous cost maps using LIDAR, based on a novel traversability rep-
resentation of the environment. We investigate two approaches.
The first, a statistical approach, computes terrain cost directly
from the point cloud. The second, a learning-based approach,
predicts an IMU response solely from geometric point cloud data
using a 2D-Convolutional-LSTM neural network. This allows us
to estimate the cost of a patch without directly driving over
it, based on a data set that maps IMU signals to point cloud
patches. Based on the terrain analysis, two continuous cost maps
are generated to jointly select the optimal path considering
distance and traversability cost for local navigation. We present a
real-time terrain analysis strategy applicable for local planning,
and furthermore demonstrate the straightforward application
of the same approach in batch mode for global planning. Off-
road autonomous driving experiments in a large and hybrid site
illustrate the applicability of the method. We have made the code
available online for users to test the method.

I. INTRODUCTION
Autonomous navigation is a key research area which un-

derpins ongoing advances in autonomous driving. A critical
feature for autonomous navigation is generation of a cost map
which is used by a path planner to computes the optimal
path from the current position to the desired destination.
Cost maps are traditionally considered in the literature as a
discrete representation, where the environment is divided into
traversable and non-traversable areas. Although this approach
performs well in both indoor [1] and on-road [2], [3] settings,
off-road terrain is often too heterogeneous to usefully distin-
guish between these two classes. Additionally, an obstacle in
an urban environment, such as a curbstone, may not be an
obstacle on natural grounds, where the robot must traverse
over natural undulations of similar size and shape to reach
the goal. Therefore, the terrain should be represented with a
continuous traversability score, which influences the planned
path alongside other metrics (e.g., distance to the goal).

1Robotics and Autonomous System Group, Data61, CSIRO, Australia
david.howard,paulo.borges,tirtha.bandy@csiro.au

2Autonomous Systems Lab, ETH Zurich, 8092 Zurich, Switzerland
waibelg@student.ethz.ch

3Faculty of Electrical Engineering, Mathematics and Computer Science,
University of Twente, Netherlands mathieunass1@gmail.com

The main idea of terrain analysis is based on the fact that,
in general, steep and rough ground should be avoided and
therefore lead to higher costs than flat and level surfaces. Chal-
lenging terrain should be avoided whenever possible since it
can increase the chance of mission failure, it can cause material
stress, lead to dicomfort of any passengers, and may require
more energy. For this reason, a longer but smoother path
is preferable in certain situations. Steep terrain is relatively
easy to perceive and compute [4], but rough terrain remains
challenging to interpret, especially if the ground is covered in
high grass or driving occurs in low-visibility environments.

Terrain analysis methods that estimate the ground from
image data have achieved good results in the past [5], [6], [7],
[8]; however more recent approaches apply machine learning
methods to gain a more comprehensive understanding of the
scene. Supervised learning approaches segment the environ-
ment into different classes using human-provided labels [9],
[10], [11], [12]. Since terrain features such as inclination,
roughness or slippage can be estimated by various sensors, the
robot is able to learn them from its own experience [13], [14],
[15], [16]. Many state-of-the-art learning approaches based on
neural networks (NN) use image data since powerful Convo-
lutional Neural Networks (CNNs) are directly applicable to
images. There are situations, however, in which varying/poor
illumination conditions can deteriorate the results, making
range sensors such as LiDAR a strong alternative.

This work focuses on navigation cost map generation for
an Autonomous Ground Vehicle (AGV) in mixed (paved and
off-road) environments. Cost maps are generated through two
main approaches; a Statistical-based Roughness Estimation
(SRE) and a Learning-based Roughness Estimation (LRE)
method. An overview of each is shown in Figures 1(a)
and 1(b). SRE uses LiDAR data to estimate the terrain inclina-
tion and roughness directly from the point cloud. For LRE, we
develop an end-to-end solution, from data extraction to cost
assignment. The underlying concept is that terrain roughness is
experienced by the vehicle when interacting with the surface,
which can be efficiently measured by proprioceptive sensing
with an Inertial Measurement Unit (IMU). By matching IMU
segments to corresponding point cloud regions, we are able
to learn a mapping from point cloud to IMU signal, and
subsequently estimate costs of unseen regions of the map via
exteroceptive LiDAR readings only. Point cloud regions are
treated as images and are processed directly by a temporally-
sensitive CNN.

Both approaches are applied to local and global planning.
For local planning, multiple trajectories are generated, and

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. PREPRINT VERSION. 2

(a) Statistical Roughness Estimation (SRE): The blue arrows illustrate the data flow for global planning and the red ones for local planning. SLAM is used to
register incoming point cloud messages in a global point cloud. The point cloud is discretized into a 2D-grid receiving a point cloud for each cell. The point
cloud is analyzed for its statistical properties resulting in a cost per cell on the global map. For local planning, multiple trajectories are generated based on the
vehicle motion model. On each trajectory, multiple point cloud patches are extracted and analyzed based on their variances in the vertical direction and their
gradients. The trajectory with the lowest cost is selected.

(b) Learning-based Roughness Estimation (LRE): The green arrows are for NN training, red for local planning, and blue for global planning. For NN training,
the C-SLAM algorithm is running on the data and provides the sensor trajectory, IMU measurements and the point cloud of the environment. The poses of the
trajectory are used to couple a point cloud patch with the IMU segment recorded around the same timestamp. The IMU cost is computed from an IMU segment
and it is used to label the associated point cloud patch, which is down-casted to a multi-dimensional image. For the global map, the C-SLAM algorithm generates
a global point cloud from which point cloud patches are extracted. The point cloud patch is down-casted to a multi-dimensional image and the NN predicts the
IMU cost per image. The resulting IMU cost is used to generate a 2D cost map, which is required for global planning. For local planning, multiple trajectories
are generated based on the vehicle motion model. Point cloud patches are constructed from the online point cloud and down-casted to images for each trajectory.
All images of one trajectory are fed into the NN predicting the IMU cost per trajectory. The trajectory with the lowest cost is selected.

Fig. 1. Overview of data flow for the two proposed approaches (SRE/LRE): The global maps have obstacles represented in red and unknown cells in blue.
The terrain traversability is encoded continuously from light green (easy to traverse) to dark green and black (hard to traverse, but still traversable, unlike
obstacles in red).

each trajectory is ranked according to the distance to the goal
and the terrain traversability using SRE or LRE in real-time.
The best trajectory is selected based on a combination of
distance and terrain cost. The applicability of the algorithms
is illustrated through autonomous driving with a full-size off-
road vehicle in field experiments, and numerous characteristics
are calculated based on measured real-world data, providing
us various metrics for the smoothness of the ground. Both
methods are compared to each other and to a traditional Binary
Method (BM), which divides the environment into traversable
and non-traversable areas.

In addition, a continuous global cost map is generated
from point cloud data for each approach. Instead of using a
binary representation for planning, the proposed metric maps
represent the terrain using 8-bits. In order to evaluate the maps,
in our implementation we use the Dijkstra algorithm to select
the optimal path based on terrain and distance, and the paths
on both maps are compared against each other and against the
paths on an occupancy grid, namely the binary method (BM)
by the same path evaluation as for the local case.

Results indicate that SRE and LRE far exceed the perfor-
mance of BM, and display high performance as general cost
map generators for navigation that are readily applicable to

both global and local planning. Field experiments show the
generation of high quality paths across a number of evaluation
scenarios when driving autonomously.

II. RELATED WORK

In early works, robots were mostly reliant on a purely local
planning approaches [5], [17], which can cause them to get
constrained in local minima, such as dead ends. Global maps
provide an alternative for determining a suitable path based
on a previously contructed representation of the environment.
Thrun [18] differentiates between metric [19] and topological
maps [20], [21], where metric maps provide a linear and
continuous representation of the world and topological maps
indicate landmark points of interest in the environment. In
our work, we focus on metric maps, since they are easier to
construct and allow for optimal global paths to be determined.

Most of the literature in terrain estimation is divided into
approaches analysing the terrain analytically and methods
based on learning. As our work is based on LiDAR data, the
following two subsections review some key methods for terrain
analysis based on geometrical and range data.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. PREPRINT VERSION. 3

A. Statistical Methods

In general, traversability is a function of the terrain geom-
etry and the terramechanic (properties of the soil and their
interaction with the vehicle wheels/tracks) characteristics [22],
[23]. The terrain geometry can be simplified by slope and
roughness, as discussed in early works that extract basic terrain
statistics (variance and slope of patches in front of the vehicle)
to quantify the traversability cost [5], [24], [25]. Roughness is
the small-scale variations in the height of a physical surface,
being closely related to traversability [26]. Mathematically,
roughness depends on how scattered or linear/planar the distri-
bution of the points in the area of interest is. Roughness can
be quantified using a number of statistical methods such as
least squares plane fitting computing the residuals [24], [27],
Gaussian mixture models and principal component analysis
over the terrain points [28]. The illustration in Figure 2 shows
the concept for 2D LiDAR returns for a vehicle-sized patch.
A ‘smoother’ terrain is shown on the top image, according
to the residuals and slope of the LiDAR readings. Hence, the
distribution of points in the top figure arguably correspond
to a terrain that is easier to traverse than bottom image. For
the slope analysis, the concept should obviously consider both
pitch and roll, as both influence traversability (Figure 3).

Fig. 2. Concept illustration of LiDAR readings (blue dots) for distinct terrains.
d represents the distance from the sensor and h the height with respect to the
sensor frame. The top image represents a ‘smoother’ terrain, with minimal
roughness (small residuals for the red line fitting) on horizontal ground. The
bottom image shows a rougher surface (larger residuals in the red line fitting)
with more slope.

Fig. 3. Concept illustration of LiDAR readings (blue dots) a inclined surface.
The traversability metric should include both pitch and roll.

Terrain roughness can be also estimated with the standard
deviation of multiple plane-fits [8], the distribution of point

cluster by calculating their covariance matrix [4], the roll
and pitch angle combined with the residual in the vertical
component z [6], the variance in z [29], or the height of
the largest step within predefined area [27]. Some approaches
use fuzzy logic to merge multiple properties [30], [31].
There is still potential for improvement by combining various
properties and multiple resolutions. Although the terrain is
estimated continuously, ultimately the values are classified
into traversable and untraversable regions, and the path is
planned on this binary representation. Various works have
demonstrated the IMU’s reading association to the type of
ground under the vehicle. The inertial data is often used for
classification of terrain [32]. The performance can be improved
by considering the speed dependency of the IMU [33]. IMU
sensors mounted on cars [34], [35](statistical) are used to
estimate the road roughness or detecting bumps on roads. None
of the approaches forecasts a continuous traversability score
from a point cloud patch relying on the IMU.

B. Learning Methods

Learning-based methods generally aim to gain a semantic
understanding in order to interpret the environment, but can
also used for traversability cost regression. The most common
application is segmentation or classification of the environ-
ment. Point cloud scenes are segmented semantically into
different classes such as road, gravel, sand, grass, for exam-
ple [36], [37], [38], or into traversable and non-traversable
areas [39], [40], [41]. For both, the intra-class variation can be
quite high, and no information is provided on how challenging
the terrain is in a traversable class. In contrast, our proposed
regression model predicts a continuous terrain traversability
cost only from point cloud data. Recently, NNs achieved
impressive results on general classification tasks [42], [43],
[44]. As part of this work we evaluated PointNet [42] for
the terrain analysis task, but the differences between natural
terrain patches are much smaller than the differences between
well defined objects (e.g., a table and a chair). In [45] terrain
is classified by the means of inertial data on indoor grounds.
Similarly to this paper, the work by Oliveira et al [46] per-
forms terrain analysis for global planning using deep learning
networks as a classification task. However, our method uses
a temporally-sensitive network representation that allows for
temporal patterns to be harnessed by the model, performing
a continuous regression. Additionally, we apply the LRE in
real-time for both local and global planning and compare it
against the proposed SRE statistical approach.

In summary, our work advances the state of the art by
predicting a continuous terrain cost solely from geometrical
LiDAR data and the continuous values are used for global
and local planning resulting in a smoother path.

III. BACKGROUND

In this section we provide information on background
algorithms that are used for terrain analysis and local planning.
In particular, we describe the LiDAR SLAM system employed,
and trajectory generation method for local planning.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. PREPRINT VERSION. 4

A. SLAM

For the terrain analysis, information from LiDAR is used to
estimate traversability costs. The points are registered into a
coherent point cloud prior to analysis using the CSIRO-SLAM
(C-SLAM) algorithm as fully described in [47], [48]. C-SLAM
performs 3D scan-matching. Until convergence, corresponding
point cloud features are matched (correspondence step). The
robot’s trajectory is then optimized to minimize errors between
the matched features and the deviation from the measured
inertial data (optimization step).

The correspondence step matches surfels of consecutive
LiDAR scans. Point clusters are created based on the point’s
temporal and spatial information. If there are enough points
in one set, the eigenvalues of its second-moment matrix
determine the cluster’s distribution. The surfel’s position and
normals form a 6D vector. Surfel matches are obtained from a
k-nearest neighbor search of a kd-tree, and the error between
the matches is computed.

The optimization step solves a linear optimization problem
to receive the trajectory corrections δr(τi), δt(τi) at the sam-
pled times τi:

Amatch

Asmooth

Ainitial

δr(τ1)
δt(τ1)

...
δr(τn)
δt(τn)

=

bmatch

bsmooth

binitial

 (1)

A and b are linear constraints: surfels match constraints, discre-
trized trajectory smoothness constraints, and initial conditions
ensuring continuity with the previous trajectory. It is solved
by the M-estimator framework using Cauchy weights, and the
trajectory is reconstructed by a cubic spline. These steps are
repeated until convergence between the matched surfels and
the estimated trajectory is achieved.

SLAM is used during data extraction for the learning
approach to couple point cloud patches with the appropriate
IMU data. Besides, SLAM registers the recorded points of the
entire operation site into a global point cloud, which serves as
the starting point for the generation of the global cost maps
by the statistical and the learning-based approach.

B. Local Trajectory Generation

For local planning, numerous possible trajectories are gen-
erated and rated based on terrain cost. Trajectory generation
is based on the kinematic constraints of the non-holonomic
vehicle, which is modelled as an Ackermann steering platform.
The robot’s state (position x,y, orientation θ) evolves according
to the following forward kinematics model: ẋ(t)

ẏ(t)
θ̇(t)

=

 v cos(θ(t))
v sin(θ(t))

v
L tan(ϕ)

 (2)

L is the wheelbase of the robot. The inputs are the velocity v
and the steering angle ϕ , which are constrained by the vehicle
properties. The equation is executed in its discretized form
with a ∆ t = 0.1s. For illustration, three possible trajectories

Fig. 4. Patch frames are allocated in front of the vehicle and follow its planned
trajectory. Points from LIDAR readings that fall within a frame are allocated
to that frame, otherwise they are discarded. Subsequent sweeps as the vehicle
approaches a patch may add new points to the patch and change the value of
terrain characteristics. The latest values of these patches are used for decision
making. Once the vehicle drives over the patch, the IMU sensation is matched
to the patch and saved, and the patch frame is reallocated to the end of the
frame queue. Points can be then allocated to it on the next LIDAR sweep.
The vehicle follows the trajectory denoted by red arrows, previously-extracted
patches are visualised behind the vehicle.

computed according to equation (2) are shown on the left
image of Figure 7. For our local planning algorithm, multiple
trajectories are generated at discretized steering angles and
are rated based on the sensed terrain at each planning step, as
discussed in the following sections.

IV. METHODOLOGY

In this section we describe the entire learning pipeline from
data extraction to the SRE and to the NN architecture for LRE.
We also explain how our terrain analysis methods improve the
quality of the local trajectory selection (local path planning).
Finally, we use both methods to generate two continuous cost
maps for global planning.

A. Prediction of the IMU Cost with a Convolutional-LSTM
Network

Our LRE approach predicts IMU costs from a point cloud
patch. The NN is trained in a self-supervised fashion based
on data recorded through manual driving.

1) Data Extraction: The method extracts point cloud
patches slightly larger than the vehicle’s footprint (for our
platform shown in Figure 8, the patch is 3 m × 2 m) and
pairs them with corresponding IMU data acquired when the
vehicle traverses that patch, as shown in Figure 4. During data
recording, the C-SLAM algorithm aligns the coordinate frames
for the three types of information: trajectory T , point cloud
P, and inertial data I. The vehicle trajectory is represented by
a vector of poses and it is used to couple an IMU segment
Ik of length N with a point cloud patch Pk at location T [k].
As inertial data is speed-dependent [33], each patch has an
associated speed measurement Sk.

a) Down-Casting: The point cloud patch is flattened to
a multi-channel image before applying convolutional filters
which are part of the NN processing. Each point in the patch

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. PREPRINT VERSION. 5

Fig. 5. Deep Convolutional-LSTM Network Architecture: a simplified representation showing a 2-dimensional image and a 1-dimensional output. The image
has dimension (x,y,2), where x, and y are the height and width of the image, and 2 is the input’s dimensionality (mean and s.d.in z). Practically, we feed in a
sequence of t patches and speeds to the LSTM, and predict the corresponding t IMU measurement segments. Input channels are separated and processed by
convolutional modules; each module consists of a convolution layer (number of filters f1, kernel size 3, stride 1), a batch normalization layer, a ReLu activation
function, a max-pooling layer (kernel size 2) and a drop-out layer (rate: 0.3). A fully-connected network transforms the t speed inputs to the dimension of
the image after the convolution filter. The linear layer is reshaped and forms an activation map of the side-input, which is multiplied element-wise with each
filter of the resulting feature map of the image channels. The resulting images are fed into multiple 2D-Convolutional-LSTM modules, the last of which
contains f2 filters. Average pooling is applied to each channel and the channels are concatenated. After processing by a fully-connected layer of size a, a
batch normalization layer, and a ReLu activation function, the last hidden layer is fully-connected to each output dimension through a softmax function.

Fig. 6. Possible figure pyramidal approach: The three different resolutions
for the mean channel.

is assigned to its closest pixel in the image. The brightness
values in the image correspond to the height values in the 3D
points. The mean z-value µz, the standard deviation in the z
direction σz, and the difference between the maximum and
minimum z-value for all points in each pixel are calculated,
giving a 3-dimensional image.

Since not all pixels may have points assigned, a pyramidal
approach is implemented. Three images of different resolu-
tions (0.2 m, 0.1 m, and 0.05 m) are queried; if a pixel in
the highest resolution image is empty, the value of the next
lowest resolution image is used instead. The pixel of the lowest
resolution image is never empty because blank pixels are
interpolated. In practice, the lowest resolution image is usually
not required as the images are generated from ≈ 3500-4500
points, which are relatively uniformly distributed.

b) IMU Transformation: Each image is a discrete time
snapshot of the terrain, whereas its associated IMU segment
is a continuous-time signal. The objective of the IMU trans-
formation is to label an image with one continuous terrain
traversability score, which can be used for planning with no
post-processing required.

We propose a combined IMU cost C, consisting of the
angular velocity in x and y and linear acceleration in z,
represented by ωx, ωy and az, respectively. Linear accelerations
in x and y are neglected as they vary due to vehicle behaviour

(e.g., accelerating or turning sharply), and are not necessarily
dependent on terrain. This is also true for angular velocity in
z.

A constant IMU bias is subtracted. At first, the absolute
value is taken for each segment (ωx, ωy, or az) because the cost
is not dependent on polarity, and each segment is normalized
into the range [0,1]. All three segments are averaged, and the
real IMU cost Cr of length N is obtained:

Cr[N] =
ωx[N]+ωy[N]+az[N]

3
(3)

Cr is a smoother, more stable signal than a single IMU
segment. Since the IMU cost per patch is desired, the mean
value over all N coefficients of Cr is calculated:

C =
1
N ∑

N
Cr[N] (4)

C is directly associated to the terrain traversability cost and is
used for navigation.

2) Deep 2D-Convolutional-LSTM Network: In order to
regress the traversability cost from IMU readings, we use a
Conv-LSTM network as illustrated in Figure 5. Convolutional
layers are used because the point cloud patches are trans-
formed to images. LSTM modules are beneficial on entire
sequences of data. Since the point cloud patches and the IMU
segments are extracted from the driven trajectory, neighboring
samples are similar to each other. Therefore feeding a full
sequence into the NN increases its performance. Speed is
provided as a side input to the network, as the IMU signal
(especially in rough terrain) is highly speed-dependent [33].
Speed is incorporated via an activation map [49], where
in fully-connected layers learn a transformation from the
dimension of the side-input to the dimension of the feature
map. The side-channel is multiplied element-wise with each
filter of the feature map after convolution. Softmax is applied
at each output node, providing a sparse representation of the

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. PREPRINT VERSION. 6

data to facilitate training [50]. k=10 softmax values represent
one output dimension.

B. Local Terrain Analysis

Algorithm 1: Local planning
Input: Current robot state r, global goal g, vehicle’s

motion model m
Output: Lowest cost trajectory.

1 while not at g do
2 get local goal l(r,g);
3 generate T trajectories(r, l, m) (figure 7);
4 foreach trajectory t do
5 init p patches ← 3 poses on t;
6 foreach p do
7 foreach point in local point cloud do
8 if point in p’s boundaries then
9 add point to p (figure 7);

10 statistical ← 0;
11 foreach p do
12 statistical += (ν +β);
13 down-cast p’s point cloud to image;

14 learning ← NN(image sequence);
15 cost ← distance(t, l) + (statistical | learning);

16 trajectory ← argmin(cost);

The local planner adapts the global path by rating multiple
trajectories based on the locally sensed terrain characteristics,
deviating around large irregularities as required (Algorithm 1).

At each planning step, the algorithm generates T trajec-
tories based on the vehicle motion model as described in
Section III-B. Three patch frames are allocated per trajectory
and filled from the local point cloud. Terrain cost is per
trajectory is computed by one of the two methods:

1) SRE: Compute ν in z and β of each patch in real-
time using the RANSAC algorithm. Terrain cost is the
summed mean of both across all patches in the trajectory.

2) LRE: Down-cast each patch into an image, and feed the
trajectory’s image sequence into the NN. The network
predicts C per trajectory, which has the same length as
the image sequence. Terrain cost is the mean value of
the output sequence.

All costs are normalized. Since the area with the most
accessible terrain should be selected, a polynomial of degree
d=4 is fitted through each terrain cost. The final cost per
trajectory is a user-defined weighted average between the
terrain cost and the Euclidean distance cost.

C. Map Generation

This section describes the generation of the global cost
maps, using both SRE and LRE. The input to both algorithms
is a global point cloud generated by C-SLAM, which is
subdivided into 20× 20cm cells. Costs per cell range from
0 (free-space) to 255 (obstacle).

1) Statistical Roughness Estimation SRE: Each point of the
global point cloud is assigned to a cell. Cells characteristics
are then calculated on all points per cell as follows.

First, all points in one of the 2D cell are formed into a
matrix G, where

G =

x1 x2 x3 · · · xn
y1 y2 y3 · · · yn
z1 z2 z3 · · · zn

 (5)

The roughness is then estimated by calculating the variance
of all points in z-direction.

ν = σ(G[3, :]) (6)

and the difference between the minimum and maximum z-
value of all points

δ = |max(G[3, :])−min(G[3, :])| (7)

The steepness is obtained by calculating the angle between
a plane-fit through the points and a flat reference plane. The
mean value is subtracted from each of the three dimensions.

GO = G−mean(G) (8)

The normal vector of the plane fitted through these points is
the third column of the transposed right eigenvectors from the
singular value decomposition.

UΣV T = GO (9)

np =V T [3] (10)

V is defined as (v1,v2,v3). v1 and v2 extends across the
collection of 3D points, which approximate best the fitted
plane. v3 is associated to the third singular value σ = 0 and is
not included in that plane, but normal to it. In our definition
we ordered the singular values in decreasing order.

If the normal vector points into the −z direction, it is
reversed to ensure that the angle is between −90◦ and 90◦.
A reference normal vector nr, the normal vector of the x-y-
plane, is determined, which points in the direction [001]T . The
angle β is the magnitude of the highest inclination:

β = arccos

(
|nr ∗np|√
nr2
√

np2

)
(11)

Please note that Equation 11 computes the angle between the
normal of the reference plane and the normal of fitted plane.
The fitted plane is the plane which best approximates all points
in one grid cell. The angle between the normals is computed
via the dot product and corresponds to the magnitude of the
inclination.

To smooth local non-linearities in β , values of a lower
resolution 60× 60cm are also computed. The final value of
each 20×20cm cell is the average of that cell’s value and the
value of a 60× 60cm cell centered on that cell, mapped to
integers in the range [0−255].

For each metric (ν , δ , β) and for both resolutions two
thresholds th1 and th2 must be heuristically selected in the
statistical method, (i) th1 to detect outlier values v and reassign
them closer to the rest of the range to prevent compression

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. PREPRINT VERSION. 7

Fig. 7. Local Planning, showing generated trajectories(L). The red arrow
symbolizes the current robot position and direction. (R) three patch frames per
trajectory are allocated and filled with points from the local point cloud. For
autonomous operation 11 trajectories are generated at a angular discretization
of 1.7◦.

during normalisation, and (ii) th2 the value above which the
cell is allocated as an impassable object.

vi = min(vi, thi) (12)

where i ∈ {1,2}. These thresholds are terrain-dependent and
require tuning.

2) Learning-based Roughness Estimation LRE: The NN is
trained to predict the cost of the IMU signal from a point cloud
patch, which is a regression problem. Because the patch and
the final resolution of the cost map differ in size and shape,
the discretized global point cloud is convolved by a filter of
the patch’s size to extract all points within its boundaries. The
resulting patch is down-cast and used by the NN to predict
the terrain cost.

As global planning must be pose invariant, this operation is
executed 4 times, rotating the filter by 90◦ each time. During
data extraction and NN training, it is assumed that the vehicle
always drives forward over a patch. Additionally, one image
at one position is input t times into the network because the
NN’s input is an image time-series. The output is averaged
over the t time steps and the 4 rotations.

3) Planning Algorithm: To evaluate the utility of global
cost map to perform planning, the baseline Dijkstra algorithm
is applied. The vertex cost corresponds to the cells values on
the cost map. The edge cost ce is based on distance and the
traversability score, aiming to jointly minimise both terrain
cost and the Euclidean distance to the goal. Equation (13)
defines ce when the robot is traveling from state s1 to state s2.
D[s] is the terrain cost at state s, d(s1,s2) is the Euclidean
distance between the two states, and e is the user-defined
Euclidean distance parameter. If e is zero, the planner takes
only the terrain into account, making the global path jittery.
On the other hand, if e is 1, the robot acts like on a binary
occupancy grid.

ce =
1
2
(1− e)(D[s1]+D[s2])+ e×d(s1,s2) (13)

Fig. 8. John Deere TE Gator: The spinning Velodyne PUCK VLP-16
LiDAR mounted on the roof of the vehicle is angled at 45 ◦ to maximize
point coverage. The LiDAR base rotates at approximately 0.5 Hz and LiDAR
measurements are streamed in at 20 Hz.

V. RESULTS

In this section we present key results from our experiments.
Initially, we describe our experimental setup and test site.
Secondly, the accuracy of the learning approach is assessed.
Then, the global continuous cost maps are evaluated in field
experiments. Finally, use of our techniques as effective real-
time local planners are demonstrated.

A. Experimental Setup

1) Autonomous Ground Vehicle: The AGV used is a John
Deere TE Gator equipped with a spinning Velodyne PUCK
VLP-16 LiDAR and a Microstrain-CV5 IMU. The vehicle is
operated in autonomous mode to ensure a consistent speed
throughout the experiments. Posemap [51] and C-SLAM
[47],[52] are used for mapping and localisation. The algo-
rithms run on a LGA1151 CPU2.8 GHz and 64 Gb of RAM.

2) Test Site: Our test site (QCAT), located in Brisbane,
Australia, contains a large area characterized by a varied
mixture of different terrain features (Figure 9(c)). It comprises
an urban-like environment, industrial sheds, asphalt roads and
a large off-road area consisting of steep and flat grass, dirt, and
pebble ground. For global cost maps, we use a pre-computed
point cloud of the site. For local planning, we generate and
update local maps online during operation.

B. Neural Network Accuracy

We initially evaluate the accuracy of the IMU signal pre-
diction with the NN approach. NN performance is based on
comparisons between the predicted cost Cp to the ground truth
Cr, and the cost signal C. The NN is trained on 119328 images,
divided into 90% training data and 10% validation data. NN
evaluation is conducted on an additional test set of 12557
terrain images.

The proposed IMU cost C and real IMU cost Cr are defined
in Section IV-A1b. The NN’s prediction, Cp is shown on
the left image in figure 10. The middle image shows C,
which is used for network training. On the right image, Cr
is displayed, which represents the terrain traversability, which

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. PREPRINT VERSION. 8

(a) Colored Learning-Based Global Cost Map.

(b) Colored Statistical-Based Global Cost Map.

(c) Different areas of the QCAT in Brisbane, Australia, highlighted on a
satellite image (©Google).

Fig. 9. a) and b) The cost map of the site is shown for both SRE and
LRE approaches: obstacles are red, blue is unknown space, and the terrain
traversability is colored from green to black. Light green is easily traversable
and black very challenging, but still traversable. Speed bumps are circled in
yellow and drain holes in cyan. c) Different regions of the QCAT site are
highlighted: Blue represents asphalt and green concrete ground. All other
parts refer to off-road terrain. The brown-colored area is a soil path through
hilly, grassy terrain, which is colored violet. The yellow part expresses a flat,
grassy plateau, which encloses a bump colored in black. The most challenging
area is a rough, and steep gravel incline, colored in red.

is then averaged over length N=64, giving an IMU signal of
640ms per image.

During this test run, in the first 30s the vehicle drives on-
road, followed by a long off-road part for approximately 250s,
before finally driving back onto the road. The off-road part
can be easily seen in Figure 10, where the signal C has a
larger magnitude and variance. The on-road part of the ride
contains three speed bumps at 290s, 310s, and 370s, which can
be identified in the three signals. To compare the signals, 10-
fold cross-validation R, mean-squared error (MSE), and mean-
absolute error (MAE) are presented in Table I. The correlation
between the prediction Cp to C is 0.88 and to Cr is 0.71.

TABLE I
COMPARING THE PREDICTED Cp TO THE REAL IMU COST Cr AND TO THE

GROUND TRUTH COST COEFFICIENT C. THE CROSS-CORRELATION R,
MEAN-SQUARED ERROR (MSE), THE MEAN-ABSOLUTE ERROR (MAE)

ARE SHOWN.

R MSE MAE
C 0.88 3.14 ·10−4 1.20 ·10−2

Cr 0.71 1.21 ·10−3 2.31 ·10−2

C. Local Cost Map Generation

We now turn our attention to local cost map generation,
to be used by a local planner. For each approach (SRE,
LRE, BM) 6 experiments are conducted, covering a combined
distance of approximately 300 m per approach. The BM only
relies on the global path computed on an occupancy grid.
/gabrielThe conducted path of the BM is not exactly straight
because the steering controller is not precise enough on rough
terrain. SRE and LRE choose their trajectory based on the
(identical) global path and on locally sensed costs while
driving. In this scenario, the robot can periodically deviate
from the global path before returning because of local terrain
features. At each decision point, the algorithm generates costs
for 11 potential trajectories at 1 Hz planning frequency, with
the controller running at 20 Hz. Figure 11 shows 3 indicative
experiments out of the 6 conducted.

There is no metric that enables direct evaluation of different
trajectories, therefore we analyse properties recorded from
real-field experiments. Table II presents the measurements
summed over all 6 autonomously driven trajectories for each
approach. Gradient β , variance ν in z, and residual in z
provide roughness and inclination estimates, computed from
patch sequences extracted along the driven path. Path length
is shorter for the BM. However, the proposed roughness
characteristics (β , ν , residual, C) allow for a much smoother
ride for SRE and LRE. Despite longer paths for SRE and
LRE, the energy and Cost of Transport (COT) is notably lower.
COT is a commonly-used measure of locomotion efficiency,
and defined as COT= E/gmd, where g is the gravitational
constant, m the mass of the vehicle (750 kg, in our test vehicle),
and the d the distance travelled. For the sake of completeness,
trajectory curvature is also recorded. We see a strong pattern
of the SRE and LRE permitting a smoother, flatter, and more
energy-efficient strategy for local navigation.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. PREPRINT VERSION. 9

Fig. 10. Showing L-R: predicted cost Cp, ground truth C, cost signal Cr . Between seconds 30 and 250 the vehicle drives on off-road, then transitions on to
a road segment with three speed bumps, at seconds 290, 310, and 370 respectively.

(a) Bump trajectories. (b) Street vs. off-road trajectories. (c) High vs. low grass trajectories.

(d) Bump image. (e) Street vs. off-road image. (f) High vs. low grass image.

Fig. 11. Local Planning: Figures 11(a), 11(b), 11(c) show the autonomously driven trajectories for each planning technique. All trajectories
are driven from left to right. The trajectory driven using the binary method is illustrated in red, SRE in yellow, and LRE in orange. They are
plotted on the continuous global cost map, where brighter pixels correspond to higher cost. Figures 11(d), 11(e), 11(f) show the view recorded
from the start point of each path. Figure 11(d) depicts a 30 cm high and a 8 m long bump surrounded by flat, grassy terrain. Figure 11(e)
shows a paved road adjacent to a relatively flat grassy surface, where the start and end state of the path are located and Figure 11(f) depicts
high and low grass. Please note that in Figure 11(c) the path of the BM is slightly curved because the grass on the left side is considered
as full obstacle (completely untraversable) as it is too high.

Fig. 12. Five different paths from the binary occupancy grid (left), statistical map (middle), and learning-based map (right). Each color represents a different
path with identical start and endpoints. Differences between the continuous cost maps and binary map are visually evident.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. PREPRINT VERSION. 10

TABLE II
PATH CHARACTERISTICS FOR EACH LOCAL PLANNING METHOD.

Characteristics Method
BM SRE LRE

Length [m] 288.4 296.1 297.2
Curvature [1/m] 0.75 0.97 0.94
Gradient β [◦] 4996 2732 2313
Variance ν in z 5.89 2.43 1.15
Residual in z 347927 217422 168335
IMU cost C 81.3 69.0 65.5
Energy [kWh] 0.42 0.41 0.40
COT 1.51 1.44 1.39

D. Global Terrain Maps

Figure 9(a) shows the learning-based cost map of the site.
Red pixels represent non-traversable obstacles. Blue pixels do
not contain enough LIDAR points and are marked as unknown.
The green color channel represents terrain difficulty and varies
from easily traversable (light green) to harder to traverse (dark
green).

Comparing different cost maps is a rather difficult task, as
there is no metric that enables direct evaluation. We therefore
conduct the same path-based analysis as for the local case.
The occupancy grid represents the environment as obstacles
or free-space.

For each approach, 5 paths covering a total distance of
≈ 1km are planned and autonomously driven on the Gator
(Figure 12), which follows the global paths as closely as
possible as no local costs are considered. For the paths on
each map, several characteristics are calculated to quantify the
terrain smoothness of the paths and thus the accuracy of the
terrain analysis.

TABLE III
FOR EACH OF THE MAPS IN FIGURE 12, SEVERAL PATH CHARACTERISTICS
ARE COMPUTED FOR THE 5 PATHS SHOWN IN THAT FIGURE. THE RESULTS

SHOWN IN THIS TABLE ARE THE AVERAGE RESULTS FOR ALL PATHS.

Characteristics BM SRE LRE
Length [m] 774 980 983
Planning Time [s] 50.91 54.12 56.86
Curvature [1/m] 0.17 0.19 0.24
Gradient [◦] 5902 3759 3976
Variance in z 7.63 2.43 3.02
Residual in z 595358 376595 399331
IMU cost C 259 183 180
Energy [kWh] 0.353 0.363 0.357
COT 0.223 0.181 0.178

Table III presents the measurements averaged over all 5
autonomously driven paths for each map. The path length is
shorter for the binary map and therefore the energy is lower.
However, terrain roughness characteristics (β , ν in z, residual
in z, IMU cost C) reveal a much smoother ride for the two con-
tinuous maps and are similar for both approaches. The results
are inherent to what the methods were trying to minimise.
SRE selects paths only dependent on point cloud data and
therefore shows better results on them. LRE performs better
on the IMU cost on which it was trained initially. As with local
planning, and despite longer paths, the COT is lower for SRE
and LRE. For the sake of completeness, planning time and path

Fig. 13. Computed paths in simulation dependent on the Euclidean distance
parameter. Each color represents a different path with identical start and
endpoints using different parameters for e. A lower value can result in a
shorter but rougher path, whereas a higher value can yield to a longer, but
smoother path.

curvature are also provided. The planning time does not vary
significantly between the three approaches. On the binary map,
the planner searches in each direction simultaneously, whereas
on the terrain map, the planner searches first on ‘easy’ and
later on more difficult terrain. The curvature is lower for paths
computed on the binary map. Continuous maps enhance the
path selection beyond sensor range allowing for a smoother,
flatter, and more energy-efficient path.

To balance between the terrain traversability cost and the
Euclidean distance cost, the weight e is used, as explained
in equation 13. Results are illustrated in Figure 13, showing
computed paths that are dependent on the Euclidean distance
parameter. To assess the sensitivity of this parameter, identical
waypoints are given to the planner, each time with a different
value of e (ranging from 0.0 to 0.5 in increments of 0.05). In
orange, e is 0.5 heavily favours shortest distance. Blue has a
e=0.3, and green e=0.2. Both elect to follow a rough, steep,
and narrow back-road at the right side in the image. Yellow
has e=0.1, and red e=0.0. The majority of these paths follow
the road. Yellow relies mainly on the terrain and even on-road
generates a jittery path. The best parameter setting depends on
use preference; as a guide the experiments in section V-D use
e=0.15.

A video illustrating the algorithms and the vehicle operating
autonomously is shown in https://youtu.be/2PGWs27XlsU.

VI. CONCLUSION

This work illustrates use of continuous cost maps to repre-
sent terrain traversability. This information is used for both
local and global planning. The goal is to achieve safer,
smoother, and energy efficient operations.

We applied two different methods for the generation of
the cost map: a statistical approach, and a learning-based
approach, and provided a traditional binary cost map as a
comparison baseline. The former estimates the terrain based
on statistical properties computed from the point cloud. For the
latter, we developed an entire learning pipeline and proposed
a novel definition of terrain roughness by sensing the ground
with an IMU sensor, and predicting an IMU cost solely from

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. PREPRINT VERSION. 11

a point cloud patch using a CNN-LSTM NN. Each approach
was evaluated in a variety of autonomous driving experiments,
with features such as path smoothness and Cost of Transport
assessed. Results show that both continuous approaches are
general enough to be successfully applied for either local
or global planning. The learning approach does not assume
useful terrain features as strongly as the statistical approach,
and does not require tuning of the thresholds on the cost
map, which increases generality further. The learning-based
approach either meets or exceeds the performance of the
other approaches in most cases. Overall, both approaches
outperform an occupancy grid by a considerable margin, with
the learning approach performing slightly better. During local
planning experiments, we observe the local planner replanning
due to sensed terrain features (i.e., not obstacles), due to the
directionality afforded to patch costing in the local case. Both
continuous approaches obtain similar performance and yield
to much better results than a trajectory only relying on the
Euclidean distance to the goal. Further work will include
incorporating colour information by giving the NN a prior
traversability class based on semantic segmentation. Also,
feeding a colorized point cloud into the NN, while keeping
the architecture identical, can provide extra sources of data to
the network to potentially improve performance.

REFERENCES

[1] W. Xi, Y. Ou, J. Peng, and G. Yu, “A new method for indoor low-
cost mobile robot SLAM,” in 2017 IEEE International Conference on
Information and Automation, ICIA 2017, 2017.

[2] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh,
M. Hebert, T. M. Howard, S. Kolski, A. Kelly, M. Likhachev, M. Mc-
Naughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski,
B. Salesky, Y. W. Seo, S. Singh, J. Snider, A. Stentz, W. Whittaker,
Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi,
J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms,
and D. Ferguson, “Autonomous driving in Urban environments: Boss
and the Urban Challenge,” in Springer Tracts in Advanced Robotics,
2009.

[3] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on Intelligent Vehicles, 2016.

[4] X. Meng, Z. Cao, S. Liang, L. Pang, S. Wang, and C. Zhou, “A terrain
description method for traversability analysis based on elevation grid
map,” International Journal of Advanced Robotic Systems, 2018.

[5] D. Langer, J. Rosenblatt, and M. Hebert, “A Behavior-Based System for
Off-Road Navigation,” IEEE Transactions on Robotics and Automation,
1994.

[6] S. Singh, R. Simmons, T. Smith, A. Stentz, V. Verma, A. Yahja,
and K. Schwehr, “Recent progress in local and global traversability
for planetary rovers,” Proceedings-IEEE International Conference on
Robotics and Automation, 2000.

[7] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L. E. Jen-
drossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen,
P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Ne-
fian, and P. Mahoney, “Stanley: The robot that won the DARPA Grand
Challenge,” Springer Tracts in Advanced Robotics, 2007.

[8] D. Helmick, A. Angelova, and L. Matthies, “Terrain adaptive navigation
for planetary rovers,” Journal of Field Robotics, 2009.

[9] A. Talukder, R. Manduchi, A. Rankin, and L. Matthies, “Fast and reliable
obstacle detection and segmentation for cross-country navigation,” 2003.

[10] C. J. Holder, T. P. Breckon, and X. Wei, “From on-road to off: Transfer
learning within a deep convolutional neural network for segmentation
and classification of off-road scenes,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2016.

[11] A. Valada, J. Vertens, A. Dhall, and W. Burgard, “AdapNet: Adaptive
semantic segmentation in adverse environmental conditions,” in 2017
IEEE International Conference on Robotics and Automation (ICRA), 5
2017, pp. 4644–4651.

[12] N. Hirose, A. Sadeghian, M. Vázquez, P. Goebel, and S. Savarese,
“GONet: {A} Semi-Supervised Deep Learning Approach For
Traversability Estimation,” CoRR, vol. abs/1803.0, 2018. [Online].
Available: http://arxiv.org/abs/1803.03254

[13] A. Angelova, L. Matthies, D. Helmick, and P. Perona, “Slip prediction
using visual information,” in Robotics: Science and Systems, 2007.

[14] M. Bajracharya, B. Tang, A. Howard, M. Turmon, and L. Matthies,
“Learning long-range terrain classification for autonomous navigation,”
in Proceedings - IEEE International Conference on Robotics and
Automation, 2008.

[15] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-
Supervised Deep Reinforcement Learning with Generalized Computa-
tion Graphs for Robot Navigation,” in Proceedings - IEEE International
Conference on Robotics and Automation, 2018.

[16] D. Silver, J. A. Bagnell, and A. Stentz, “Learning from demonstration for
autonomous navigation in complex unstructured terrain,” International
Journal of Robotics Research, vol. 29, no. 12, pp. 1565–1592, 2010.

[17] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics and Automation Magazine, 1997.

[18] S. Thrun, “Robotic Mapping: A Survey,” Science, 2002.
[19] A. Elfes, “Sonar-Based Real-World Mapping and Navigation,” IEEE

Journal on Robotics and Automation, 1987.
[20] B. Kuipers and Y. T. Byun, “A robot exploration and mapping strategy

based on a semantic hierarchy of spatial representations,” Robotics and
Autonomous Systems, 1991.

[21] D. Kortenkamp and T. Weymouth, “Topological mapping for mobile
robots using a combination of sonar and vision sensing,” in Proceedings
of the National Conference on Artificial Intelligence, 1994.

[22] G. Ishigami, A. Miwa, K. Nagatani, and K. Yoshida, “Terramechanics-
based model for steering maneuver of planetary exploration rovers on
loose soil,” Journal of Field robotics, vol. 24, no. 3, pp. 233–250, 2007.

[23] ——, “Terramechanics-based analysis on slope traversability for a plan-
etary exploration rover,” in Proceedings of the International Symposium
on Space Technology and Science, vol. 25, 2006, p. 1025.

[24] D. B. Gennery, “Traversability analysis and path planning for a planetary
rover,” Autonomous Robots, vol. 6, no. 2, pp. 131–146, 1999.

[25] B. Hamner, S. Singh, S. Roth, and T. Takahashi, “An efficient system for
combined route traversal and collision avoidance,” Autonomous Robots,
vol. 24, no. 4, pp. 365–385, 2008.

[26] M. G. Bekker, “Introduction to terrain-vehicle systems. part i: The
terrain. part ii: The vehicle,” MICHIGAN UNIV ANN ARBOR, Tech.
Rep., 1969.

[27] P. Krüsi, P. Furgale, M. Bosse, and R. Siegwart, “Driving on Point
Clouds: Motion Planning, Trajectory Optimization, and Terrain Assess-
ment in Generic Nonplanar Environments,” Journal of Field Robotics,
vol. 34, no. 5, 2017.

[28] J. F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural
terrain classification using three-dimensional ladar data for ground robot
mobility,” Journal of Field Robotics, 2006.

[29] K. Iagnemma, F. Genot, and S. Dubowsky, “Rapid physics-based rough-
terrain rover planning with sensor and control uncertainty,” Proceedings
- IEEE International Conference on Robotics and Automation, 1999.

[30] H. Seraji and A. Howard, “Behavior-based robot navigation on challeng-
ing terrain: A fuzzy logic approach,” IEEE Transactions on Robotics and
Automation, 2002.

[31] Y. Tanaka, Y. Ji, A. Yamashita, and H. Asama, “Fuzzy based traversabil-
ity analysis for a mobile robot on rough terrain,” in Proceedings - IEEE
International Conference on Robotics and Automation, 2015.

[32] A. Krebs, C. Pradalier, and R. Siegwart, “Comparison of Boosting Based
Terrain Classification Using Proprioceptive and Exteroceptive Data,” in
Springer Tracts in Advanced Robotics, 2009.

[33] F. G. Oliveira, E. R. Santos, A. A. Neto, M. F. Campos, and D. G.
Macharet, “Speed-invariant terrain roughness classification and control
based on inertial sensors,” in Proceedings - 2017 LARS 14th Latin
American Robotics Symposium and 2017 5th SBR Brazilian Symposium
on Robotics, LARS-SBR 2017 - Part of the Robotics Conference 2017,
2017.

[34] V. Surblys, V. Žuraulis, and E. Sokolovskij, “Estimation of road
roughness from data of on-vehicle mounted sensors,” Eksploatacja i
Niezawodnosc - Maintenance and Reliability, vol. 19, pp. 369–374,
2017.

[35] W. Wen, “Road Roughness Detection by Analysing IMU Data,” 2008.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. PREPRINT VERSION. 12

[36] L. Tchapmi, C. Choy, I. Armeni, J. Gwak, and S. Savarese, “SEGCloud:
Semantic segmentation of 3D point clouds,” in Proceedings - 2017
International Conference on 3D Vision, 3DV 2017, 2018.

[37] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros,
P. Morton, and A. Frenkel, “On the segmentation of 3D lidar point
clouds,” in Proceedings - IEEE International Conference on Robotics
and Automation, 2011.

[38] M. Kragh, R. N. Jørgensen, and H. Pedersen, “Object detection and
terrain classification in agricultural fields using 3d lidar data,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2015.

[39] A. Santamaria-Navarro, E. H. Teniente, M. Morta, and J. Andrade-
Cetto, “Terrain classification in complex three-dimensional outdoor
environments,” Journal of Field Robotics, 2015.

[40] B. Suger, B. Steder, and W. Burgard, “Traversability analysis for mobile
robots in outdoor environments: A semi-supervised learning approach
based on 3D-lidar data,” in Proceedings - IEEE International Conference
on Robotics and Automation, 2015.

[41] J. L. Martı́nez, M. Morán, J. Morales, A. Robles, and M. Sánchez,
“Supervised learning of natural-terrain traversability with synthetic 3D
laser scans,” Applied Sciences (Switzerland), 2020.

[42] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in Neural
Information Processing Systems, 2017.

[43] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on
point sets for 3D classification and segmentation,” in Proceedings - 30th
IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, 2017.

[44] H. Thomas, C. R. Qi, J. E. Deschaud, B. Marcotegui, F. Goulette,
and L. Guibas, “KPConv: Flexible and deformable convolution for
point clouds,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019.

[45] F. Lomio, E. Skenderi, D. Mohamadi, J. Collin, R. Ghabcheloo, and
H. Huttunen, “Surface Type Classification for Autonomous Robot
Indoor Navigation,” CoRR, vol. abs/1905.0, 2019. [Online]. Available:
http://arxiv.org/abs/1905.00252

[46] F. G. Oliveira, A. A. Neto, D. Howard, P. Borges, M. F. Campos,
and D. G. Macharet, “Three-dimensional mapping with augmented
navigation cost through deep learning,” Journal of Intelligent & Robotic
Systems, vol. 101, no. 3, pp. 1–21, 2021.

[47] M. Bosse and R. Zlot, “Continuous 3D scan-matching with a spinning
2D laser,” 2009.

[48] R. Zlot and M. Bosse, “Efficient large-scale three-dimensional mobile
mapping for underground mines,” in Journal of Field Robotics, 2014.

[49] Y. Zhou and K. Hauser, “Incorporating side-channel information into
convolutional neural networks for robotic tasks,” in Proceedings - IEEE
International Conference on Robotics and Automation, 2017.

[50] J. Hwang, J. Kim, A. Ahmadi, M. Choi, and J. Tani, “Predictive coding-
based deep dynamic neural network for visuomotor learning,” in 7th
Joint IEEE International Conference on Development and Learning and
on Epigenetic Robotics, ICDL-EpiRob 2017, 2018.

[51] P. Egger, P. V. Borges, G. Catt, A. Pfrunder, R. Siegwart, and R. Dube,
“PoseMap: Lifelong, Multi-Environment 3D LiDAR Localization,” in
IEEE International Conference on Intelligent Robots and Systems, 2018.

[52] M. Bosse, R. Zlot, and P. Flick, “Zebedee: Design of a spring-mounted 3-
D range sensor with application to mobile mapping,” IEEE Transactions
on Robotics, 2012.

Gabriel Günter Waibel Gabriel received his BSc.
in 2018 and MSc. in 2020 in Information Technol-
ogy and Electrical Engineering from ETH Zurich,
Switzerland. He conducted his master’s thesis at the
Robotics and Autonomous System Group, CSIRO,
Brisbane. Currently, he is a research engineer at the
Robotic Systems Lab, ETH Zurich. There he was
part of Team Cerberus that won the DARPA SubT
Final Event and is participating in the ESA Space
Resource Challenge. His research interests lie in the
fields of lidar-based localization and mapping, and

navigation for robotic systems.

Tobias Löw received his BSc. and MSc. in Me-
chanical Engineering from ETH Zürich, Switzerland,
in 2018 and 2020, respectively. He conducted his
master’s thesis at the Robotics and Autonomous
Systems Group, CSIRO, Brisbane. Currently, he is
a Ph.D. student at École Polytechnique Fédérale de
Lausanne (EPFL), working in the Robot Learning
and Interaction Group at the Idiap Research Institute.
His research interests lie in exploiting geometric
algebra and tensor decomposition methods for robot
motion planning and exploration.

Mathieu Nass received the BSc. in Applied Physics
and a MSc. in Computer Science from the Univer-
sity of Twente, the Netherlands, in 2018 and 2020
respectively. During his MSc. both his internship
and final thesis were related to SLAM. The latter
of which was conducted at DEMCON Enschede,
the Netherlands, on integrating Wi-Fi measurements
in a graph-based SLAM algorithm. The former was
conducted at the Robotics and Autonomous System
Group at CSIRO in collaboration with the authors
of this paper.

David Howard received the B.Sc. in Computing
and M.Sc. in Cognitive Systems from the University
of Leeds, UK, in 2005 and 2006 respectively. In
2011 he received the Ph.D. degree from University
of the West of England, UK, where he stayed as
a Postdoctoral Fellow until 2013. Since 2013, he
has been in the Robotics and Autonomous Group at
CSIRO in Brisbane, Australia, where he is a Senior
Research Scientist and Team Leader. His research
interests span machine learning, evolutionary com-
puting, field robotics, and soft robotics. Dr. Howard

holds an Adjunct position at the University of Queensland, Australia.

Tirthankar Bandyopadhyay Tirthankar Bandy-
opadhyay received his PhD in Mechanical Engi-
neering specializing in Robotics in 2010 from the
National University of Singapore (NUS). From 2010
to 2013, he was a post-doc researcher in Sin-
gapore MIT Alliance for Research and Technol-
ogy (SMART). Since 2013, he has been with the
Robotics and Autonomous Systems Group at CSIRO
in Brisbane, Australia, where he is currently a Senior
Research Scientist. His research focuses on robot
locomotion, motion planning under uncertainty and

robot-world interaction.

Paulo Vinicius Koerich Borges received the B.E.
and M.Sc. degrees in electrical engineering from
Federal University of Santa Catarina (UFSC), Brazil,
in 2002 and 2004, respectively. In 2007 he received
his Ph.D. degree from Queen Mary, University of
London (QMUL). From 2007 to 2008, he was as
post-doc researcher at QMUL. Since 2009, he has
been in the Robotics and Autonomous Systems
Group at CSIRO in Brisbane, Australia, where he
is currently a Principal Research Scientist and leads
the Robotics Perception Team. His research focuses

on visual-based robot localisation, obstacle detection, and multi-sensor infor-
mation fusion. In 2012-13, he held a visiting scientist appointment at ETH
Zurich in Switzerland. Dr. Borges is also an Adjunct Associate Professor with
the School of Information Technology at Griffith University, Australia.

